KULEUVEN

Laser-assisted modern nuclear physics

Lecture 2:
High-resolution laser spectroscopy \& atom traps

Prof. Thomas Elias Cocolios

IKS - KU Leuven
Belgium

Yes, I know!

Another Leonard

Though I might identify more with Basil sometimes... "Je sers la science, et c'est ma joie!"

Who is Prof Thomas?

Starting 1 October 2015 as a new professor within IKS - KU Leuven

Creating new opportunities with radioactive ion beams CERN-MEDICIS

TRANSCAT

Laser-assisted modern nuclear physics

- Lecture 1 :
- Fundamentals of the atom-nucleus interaction
- Lasers for the production of radioactive ion beams
- Lecture 2 :
- High-resolution collinear laser spectroscopy
- Atom trapping
- Anti-atomic studies

High-resolution collinear laser spectroscopy

Addressing the nuclear observables across the nuclear chart

General concept: Fluorescence Spectroscopy

- Ion beam in at ISOL
energy
- Tune ion beam energy
- Neutralise ions
- Overlap laser and excite atomic transition
- Observe fluorescence (atomic decay) with photomultiplier

Fluorescence

Doppler compression in collinear geometry

- The beam energy spread is determined by the ion source
- Temperature, pressure, voltage instabilities
- Energy spread is CONSTANT
- Transitions are broadened by the Doppler effect applied to the velocity spread of the ions
- Doppler compression

$$
E=\frac{1}{2} m v^{2} \Rightarrow \delta E=m v \delta v
$$

Increasing v decreases $\bar{\delta} v$!!
A beam energy of 30 keV (typical at ISOL facilities) is sufficient to reduce the Doppler broadening to the natural linewidth.

Beam bunching and time definition

- RFQ cooler-buncher
- collects \& traps ions
- cools them by collisions in He
- release the ions with a well-defined time structure
- Continuous background
- proportional reduction in background
- no loss in signal

Quantum inversion in the ${ }_{29} \mathrm{Cu}$ isotopes

High resolution
revealed the hfs, the spin, and the electromagnetic moments.
Swap between $p_{3 / 2}$ and $f_{5 / 2}$ attributed to monopole migration.

Beam energy uncertainties

- The laser frequency is Doppler corrected using the laboratory laser frequency and the beam velocity.
- Systematic uncertainties arise from the long-term drift of the laser frequency and from the jitter on the ion source highvoltage power supply.

$$
\left.\begin{array}{l}
\nu_{-}=\nu_{0} \sqrt{\frac{1-\beta}{1+\beta}} \\
\nu_{+}=\nu_{0} \sqrt{\frac{1+\beta}{1-\beta}}
\end{array}\right\} \quad \nu_{-} \cdot \nu_{+}=\nu_{0}^{2}
$$

This provides an absolute measure of the laser frequency, from which one may infer the absolute beam energy.

Polarised beams

Let me remind you of yesterday...

Atomic transitions

To first order, the photon field can be doesidered as an electric dipole fielster

$$
\begin{aligned}
& \Delta l= \pm 1 \\
& \Delta J=8 \rightarrow 1, \quad J=0 \nrightarrow 0 \\
& \Delta F \Rightarrow 0, \pm 1, \quad F=0 \nrightarrow 0
\end{aligned}
$$

Parity change
1 unit of angular momentum

Selection rules

$$
s \leftrightarrow p, p \leftrightarrow d, d \leftrightarrow f, \ldots
$$

Optical pumping of magnetic substates

- The polarisation of the light • The decay opens all three provides an additional selection rule

$$
\begin{aligned}
\text { circular }+ & \Rightarrow \Delta m_{F}=+1 \\
\text { circular }- & \Rightarrow \Delta m_{F}=-1 \\
\text { longitudinal } & \Rightarrow \Delta m_{F}=0
\end{aligned}
$$ paths and eventually the population is displaced to a single magnetic substate

Polarised nuclear beams

- Under a weak laser field, the m_{F} substate is a good quantum number and the e^{-} and nucleus are coupled
- Applying a weak B field lines up the e^{-} and by proxy the nucleus
- Decay asymmetry is then be monitored

Collinear Resonance Ionisation Spectroscopy

CRIS: an extra level of complication

to CRIS
experiment

CRIS: an extra level of complication

- Starts like collinear fluorescence: 30-60 keV ion beam, neutralisation, overlap
- Ends like in-source spectroscopy: ion counting (MCPe for secondary electrons, MCPi for direct ion impact, alphadecay spectroscopy station for short-lived nuclei)
- In-between subtleties: deflecting non-neutralised fraction, differential pumping for ultra-high vacuum against collisional non-resonant ionisation, synchronisation

CRIS: an extra level of complication

- Laser system to provide for each step in the ionisation scheme
- Resonant step for spectroscopy: high resolution is necessary => cw laser (like for other collinear work)

- Final step requires a high photon flux => high power density => pulsed laser
- Duty cycle of the ion beam delivery has to match that of the laser => RFQ bunch release \& pulsed laser synchronisation

CRIS: an extra level of complication

- 3 detection setups:
- MCPi for directly impinging ions
- MCPe for secondary electrons from ions impinging on a copper plate
- DSS for alpha decay of short-lived isotopes
- MCPi is more sensitive to weak rates but more fragile than MCPe, and sensitive to decays
- DSS is most sensitive and allows isomer separation, but lacks instantaneous
 response

CRIS: high resolution

- Cw resonant laser vs pulsed ionisation laser
\Rightarrow multiple possible excitation cycles of the resonant transition and optical pumping
\Rightarrow signal loss \& broadening
\star Chopped cw laser light!
- 50 ns pulse length
- synchronised with ion bunch and pulsed lasers
- delayed to avoid interference with other lasers

CRIS: high sensitivity

Atom trapping

Another leap into resolution

Laser cooling

\Rightarrow Radiative Pressure
photons give a small momentum transfer radiation is isotropic
Irradiate - Radiate - Repeat
\Rightarrow Radiative Pressure Cooling put the laser slightly off resonance Doppler effect depending on velocity direction
velocity dependent force apply on all 6 directions

Laser trapping

\Rightarrow Magneto Optical Trap
small magnetic field to lift m_{j} degeneracy
use laser helicity to tune scattering rate
push in all 6 directions
You will always make an odd number of mistakes!!

Laser Traps in Action

- FrPNC experiment at TRIUMF
- successfully trapped ${ }^{206} \mathrm{Fr}$
- measured the hyperfine anomaly in $206,207,209,213,221 \mathrm{Fr}$
- will search for anapole moments and physics
 beyond the Standard Model

Study of the angular correlation between the electron and the neutrino in β decay

- TRINAT:
- laser catcher
- laser transport
- laser trap

Laser Traps in Action

Laser Traps in Action

Exotic laser spectroscopy

As if radioactive nuclei aren't exotic enough!

Laser spectroscopy at CERN AD

to Gran Sasso

BOOSTER

AD Antiproton Decelerator on conversion PS Proton Synchrotron
SPS Super Proton Synchrotron

- Collinear laser spectroscopy
\uparrow High resolution to probe the physics observable
- High sensitivity to the equipment stability
- Collinear resonance ionisation spectroscopy
\downarrow High resolution from collinear geometry

૪ High sensitivity from resonance ionisation

- Laser trapping for highest resolution
- Laser spectroscopy to test the standard model and fundamental forces beyond nuclear physics

Ze END

