

Laser-assisted modern nuclear physics

Lecture 1: From the atom to the nucleus & the production of radioactive ion beams

> Dr Thomas Elias Cocolios STFC Ernest Rutherford Research Fellow The University of Manchester, UK

Who is Dr Thomas?

French - Greek - American B.Sc.'03, M.Sc.'05, McGill University, Montréal, Qc Ph.D.'10, KU Leuven, Belgium CERN Research Fellow 2010-12, Geneva, CH STFC Ernest Rutherford Research Fellow 2012-15, Manchester, UK

Who is Dr Thomas?

Keywords

Laser Polonium Out of the box Knitting Singing Running

Laser-assisted modern nuclear physics

- Lecture 1:
 - Fundamentals of the atom-nucleus interaction
 - Lasers for the production of radioactive ion beams
- Lecture 2:
 - High-resolution collinear laser spectroscopy
 - Atom trapping
 - Anti-atomic studies

The atom

A quantum system under EM forces

$$\left(-\frac{\hbar}{2m}\nabla^2 + V\right)\psi = E\psi.$$

$$V(r) = \frac{Ze^2}{4\pi\epsilon_0 r}$$

Let's enjoy some math now!

Solving the (hydrogen) atom

Double separation of variables in spherical coordinates

$$\begin{split} \psi(r,\theta,\phi) &= R(r)Y(\theta,\phi) \\ \frac{1}{R(r)} \frac{d}{dr} \left(r^2 \frac{d}{dr} \right) R(r) - \frac{2mr^2}{\hbar^2} \left[V(r) - E \right] &= l(l+1), \\ \frac{1}{Y(\theta,\phi)\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial}{\partial\theta} \right) Y(\theta,\phi) + \frac{1}{Y(\theta,\phi)\sin^2\theta} \frac{\partial^2}{\partial\phi^2} Y(\theta,\phi) &= -l(l+1). \end{split}$$

$$Y(\theta,\phi) = f(\theta)g(\phi)$$

$$\frac{\sin\theta}{f(\theta)}\frac{d}{d\theta}\left(\sin\theta\frac{d}{d\theta}\right)f(\theta) + l(l+1)\sin^2\theta = m^2 \&$$
$$\frac{1}{g(\phi)}\frac{d^2}{d\phi^2}g(\phi) = -m^2.$$

Separation constants make angular momentum quantum numbers appear naturally

Solving the (hydrogen) atom

Solving backwards reveals some conditions on / & m

 $g_m(\phi) = e^{im\phi}$

$$f_{l,m}(\theta) = (-1)^m \sqrt{\frac{(2l+1)(l-m)!}{4\pi(l+m)!}} P_{l,m}(\cos\theta),$$

where $l \in \mathbb{N}$ & $|m| \le l.$
$$R_{n,l}(r) = \sqrt{\frac{2}{na_0}^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}} e^{-r/na_0} \left(\frac{2r}{na_0}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2r}{na_0}\right),$$

where $n \in \mathbb{N}$ & $n \ge l+1$

 $j = l \pm \frac{1}{2}, \quad j > 0.$

And let us not forget the electron spin too!

Quantisation is a natural outcome of solving the Schrödinger equation

Building up the atom

Ordering up the levels reveals some known pattern

Atoms are not hydrogen-like and the electrons interact with one another n=4 n=4

n=3		★↓ ★↓★↓	Z=18 => Ar
n=2	↑ ↓	★↓ ★↓★↓	Z=10 => Ne
n=1		Z	=2 => He

The natural appearance of atomic magic numbers

Taking a closer look

 $\boldsymbol{F} = \boldsymbol{I} + \boldsymbol{J},$

Hyperfine structure of the atomic levels

 $+225 \,\mathrm{MHz}$

-300 MHz

 V_{Dipole}

-175 MHz

The Univ of Manc

 $J = \frac{3}{2}$ I = 3

 $\sim 7 \times 10^8 \,\mathrm{MHz}$

 $V_{Coulomb}$

Hyperfine structure

 $\Delta E = \frac{A}{2}K$

Let's do the math!

F = I + J, $|I - J| \le F \le I + J.$

Measuring the nuclear spin!

 $A = \frac{\mu B_0}{IJ}$

A_1	$\mu B_{01} I J_2$	$B_{01}J_2$	$\underline{A} \ \underline{\mu} B_0 \ \underline{I'J} \ \underline{\mu} \underline{I'}$
$\overline{A_2}$	$IJ_1 \mu B_{02}$	$\overline{B_{02}J_1}$,	$A' = IJ \ \mu'B_0 = \mu'I$

Magnetic dipole moment

Hyperfine structure

A perturbation of a perturbation of a perturbation of a pertu

The Univ of Manch

$$\Delta E = \frac{A}{2}K \qquad A = \frac{\mu B_0}{IJ}$$

For s and $p_{1/2}$ orbitals, B_0 is not uniform over the nuclear volume Averaging the interaction over the volume induces a correction

The Univ of Manc

Hyperfine structure

Let's do the math!

F = I + J, $|I - J| \le F \le I + J.$ $\Delta E = \frac{B}{2} \frac{3K(K+1) - 2I(I+1)2J(J+1)}{2I(2I-1)2J(2J-1)}$ $B = \frac{eQ}{4} \frac{\partial^2 V}{\partial z^2}, \qquad K = F(F+1) - I(I+1) - J(J+1)$ |,J > 1/2

A perturbation of a perturbation of a perturbation of a perturbation

Electric quadrupole moment

Atomic transitions

Atomic transitions

What the atom may or may not do

The Univ of Manc

Atomic transitions

What the atom may or may not do

To first order, the photon field can be considered as an electric dipole field (E1)

 $\Delta l = \pm 1$

$$\Delta J = 0, \pm 1, \quad J = 0 \nrightarrow 0$$

$$\Delta F = 0, \pm 1, \quad F = 0 \nrightarrow 0$$

Low-energy atomic levels which cannot satisfy these rules towards the atomic ground state will trap electrons with no (easy) means of decay.

Metastable states

 $s \leftrightarrow p, p \leftrightarrow d, d \leftrightarrow f, \dots$

Atomic transitions

 $\frac{F = \frac{5}{2}}{F = \frac{1}{2}}F = \frac{3}{2}$

 $F = \frac{3}{2}$

 $F = \frac{1}{2}$

2

Frequency detuning [GHz]

 $J = \frac{3}{2}$

 $422\,\mathrm{nm}$

 $J = \frac{1}{2}$

More math?!

 $\langle F_f, m_f | \boldsymbol{e} \cdot \boldsymbol{d} | F_i, m_i \rangle$ $(2F_i + 1)(2F_j + 1) \times$ $\left(\begin{array}{ccc} F_f & 1 & F_i \\ -m_f & 0 & m_i \end{array} \right)^2 \left\{ \begin{array}{ccc} J_f & F_f & I \\ F_i & J_i & 1 \end{array} \right\}^2$

Selection rules (i.e. number of transitions) and relative amplitudes are spin dependent and can be used to determine /

Hyperfine transitions

HFS amplitude [a.u.] 9.0

0.2

Intensities are proportional to the overlap of the final and initial quantum states under the action of the electric dipole operator

Atomic transitions

More perturbations

$$\delta\nu^{AA'} = \frac{A' - A}{AA'} \left(m_e \nu + M_{SMS} \right) + F \delta \langle r^2 \rangle^{AA'}$$

<u>Mass shift</u>

The Univ of Manch

> From one isotope to the next, the reduced mass of the nucleus + electron system varies, giving rise to a mass shift, scaling with A^{-2} . From one nuclear state to the next, the charge distribution within the nucleus may vary, perturbing electron orbitals with a non-vanishing overlap with the nucleus

Field shift

More details

The Univ of Manch

- $\delta\nu^{AA'} = \frac{A' A}{AA'} \Big(m_e \nu + M_{SMS} \Big)$ scales with A-2 direct impact indirect impact can easily be accounted for
- negligible between nuclear isomers
- reduced impact in heavy systems

Mass shift

- arises from the rearranging of the electronic cloud
- cannot be analytically determined for more than 3 electrons
- must rely on large-scale calculations
- can be >0 or <0

ersi

Isotope shift

$$\mu_{AA'} = \frac{AA'}{A'-A}$$

Experimental approach to avoid calculations

The Universit of Manchest

King plot

Isotope shift

$$\mu_{AA'} = \frac{AA'}{A'-A}$$

The art of fitting a straight line

$$\mu_{AA'}\delta\nu^{AA'} = M + F\mu_{AA'}\delta\langle r^2\rangle^{AA'}$$

2 points => fitting a straight line <u>1 point</u> => reference isotope TOTAL => 3 data points minimum

Н	all	ali	&				3+	2	1	0							Η
Li	Be	alk	ali	-ea	rth	1						В	С	Ν	0	F	N
Na	Мg										Al	Si	Ρ	s	Cl	A	
к	Ca	Sc	Тi	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	ĸ
Rb	Sr	Υ	Zr	Nb	Mo	Тс	Ru	Rh	Ρd	Ag	Cd	In	Sn	Sb	Те	I	Х
Cs	Ba	Lu	Hf	Та	w	Re	Os	Ir	Pt	Au	Нg	ΤI	Рb	Bi	Ро	At	R
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Мt	Ds	Rg	Ср				-		
		La	Ce	Pr	Nd	Рm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb		
		Ac	Тh	Pa	u	No	Pц	Δm	Ст	Bk	Cf	Es	Fm	Md	No		

Isotope shift

 $\mu_{AA'} = \frac{AA'}{A'-A}$

RIB Production

Isotope production

Start with your favourite facility

Beam properties ISOL fragmentation

- Thick target
 - no refractory elements
 - slow (>ms) extraction
- Mass separation
 - high purity
- Bespoke ion sources
 - surface source for low IP
 - plasma for gases
 - non discriminate

- Thin target
 - all elements
 - fast extraction
- Pre mass separation
 - Iow purity
- Gas catcher
 - slow thermalisation (>ms)
 - survival
 - non discriminate

Beam properties ISOL fragmentation

- Thick target
 - no refractory elements
 - slow (>ms) extraction
- Mass separation
 - high purity
- Bespoke ion sources
 - surface source for low IP
 - plasma for gases
 - non discriminate

- Thin target
 - all elements
 - fast extraction
- Pre mass separation
 - Iow purity
- · Gas catcher
 - slow thermalisation (>ms)
 - survival
 - non discriminate

RILIS

Resonance Ionisation Laser Ion Source

 Resonant transitions specific to a single element are chosen

The University of Manchester

> No single transition has enough energy to non-resonantly ionise an atom directly

Everybody's favourite ion source

Selectivity

The power of a pure beam

 $S = \left(\frac{\Delta \omega_{AB}}{\Gamma}\right)^2$

- Each resonant transition has an associated selectivity.
- The selectivity of different transitions multiplies over.

ON/OFF

-aser

Overcoming contaminants by geometrically decoupling the **atomiser** from the **ionising volume**

JGU

JOHANNES GUTENBERG

 $_IST$

Laser Ion Source & Trap

VADLIS

Versatility in the use of the VADIS with laser

RILIS

- pure plasma
- pure laser
- mixed plasma / laser

Everybody's favourite ion source

In-source spectroscopy

5 laser spectroscopy

IGLIS

IJLIS

λ

JeLaval Nozzle

- Shaping a parallel gas jet for minimal divergence
- High Mach number for low temperature
- lon signal (arb. u.) Cross beam geometry to probe only the jet

In-Jet Laser Ion Source

The University of Mancheste

Lecture 1

• The atom is sensitive to the properties of the nucleus

- spin, electromagnetic moments, anomalies, distributions
- The laser ion sources provide selective enhancement
 - clean beams for experiments
 - isomeric beams for detailed studies
 - laser spectroscopy for dipole moments & charge radii

Ze END