

Stéphane Grévy

Stéphane Grévy Directeur de Recherches CNRS grevy@in2p3.fr

- 1997 : PhD at IPN Orsay Study of halo nuclei ¹¹Be and ¹¹Li

- 1997-1998 : Post Doctoral position at the NSCL-MSU (US)

Main scientific program :

Study of the modifications of the shell structure in the n-rich nuclei Experimental program centered around N=20 and N=28

- 1998-2004 : LPC Caen

Development of the neutron multi-detector array TONNERRE

- 2004-2010 : GANIL

Scientific coordinator of the LISE spectrometer

-2010... : CENBG

Scientific coordinator of the PIPERADE project for DESIR/SPIRAL2

Content

- Why to trap particles ?
- What is trapping/cooling ?
- History
- Main applications
- How to trap particles ?
- Penning traps
- Paul traps
- cooling
- Traps in the "real" life
 - ightarrow Some applications in nuclear Physics

The modern trappers : grown at the Heisenberg's school $\Delta E \cdot \Delta t \geq 1$

High precision implies very long observation time \rightarrow *confinement*

Trapping = isolation of particles over a long period of time

For an atomic physicist \rightarrow Dream : single atom at rest in a free space, free of uncontrolled perturbation

almost a reality with traps

Long' observation time:

 \rightarrow ion-motion manipulation;

 \rightarrow precision measurements ;

Isolation:

 \rightarrow no matrix effects \rightarrow thermal isolation \rightarrow low temperature

 \rightarrow high control of transformations (reactions/decays)

 \rightarrow single species \rightarrow antiparticles...

 \rightarrow experiments on few or ever a single ion

Trapping and Storage devices

relativistic particles

particles at nearly rest in space

- ion cooling
- "infinite" storage time
- single ion sensitivity
- high accuracy
- mass spectrometric capabilities

large number of applications in atomic and nuclear physics

Principle of Trapping

Radial force

electric fields

magnetic fields

light fields

Harmonic potential

Cooling

harmonic oscillation

2 or 3 independent eigen frequencies damping of oscillation amplitudes

minimization of trap imperfections

"infinite" storage time

History

Physics landscape at the dawn of the XXth century

o Mechanical laws	\rightarrow New
o Electromagnetism	→ Max

- Statistical thermodynamics
- → Newton
- Maxwell
- → Kelvin, Maxwell, Boltzman... Gibbs

"There is nothing new to be discovered in physics now. All that remains is more and more precise measurement"

> William Thomson (Lord Kelvin), 1900 British Association for the advancement of Science

Composition of matter

o Matter is made of indivisible atoms

- o Atoms of a given element are identical
- Atoms of an element can be combined to those of another one to create a chimical compound
- o Atoms of different elements have different masses

Beginning of XXth century : Two simultaneous revolutions

 \circ Major discoveries \rightarrow observation of the radioactivity

 \rightarrow sub-atomic world

 \circ New concepts \rightarrow Quantum physics

History

- 1924: Pauli proposed the idea of an inner degree of freedom of the electron, which he insisted should be thought of as genuinely quantum mechanical in nature
- ➢ 1925: Uhlenbeck&Goudsmit postulate existence of spin and magnetic moment g of the e⁻
- > 1927: equation of Dirac \rightarrow theoretical justification of the spin and g=2
- 1927 intense discussions (Dirac, Bohr, Pauli...) about the best experiment to measure the
 1930 magnetic moment of a free electron
- > 1930: Solvay Conference

"Bohr's theorem" : forbidden tu use "classical" magnetic moment experiments to measure the g-parameter of the free electron

Very interesting period of sciences history. Difficulty to apply the new quantum physics; intellectual "blockage"; problems of "language"...

History

➢ 1947: First experiment of Nafe, Neson and Rabi on the hyperfine structure of the ground state of H and D <u>atoms</u>

→ difference with theory of 0.2% Breit : because of g ≠ 2 Other experiments → g = 2(1.00119±0.00005) $\Delta g/g \simeq 5.10^{-5}$

The uncertainties are coming from relativistic corrections and the interactions between the valence electrons and the other ones in the atom...

➢ 1948 Better experiments but still on bound electrons in the atom
 1957 → At the limit because the relativistic corrections ~ needed precision

 \rightarrow Need for new type of experiments on unbound electrons

Idea to trap the electrons but...

Impossible to create a 3D trapping potential using only electrostatic fields...

 \rightarrow Penning and Paul traps

Birth of the Penning trap

1936 : F. M. Penning built a vaccum gauge based on a discharge tube in a magnetic field

-HV between Anode and grounded Cathodes
-Discharges in the gas

→ production of electrons
- Ionization of the gas

→Low current

IDEA : use a magnetic field to force the electrons

to describe tight cyclotron orbits around the magnetic field lines

 \rightarrow slowing the diffusion rate

 \rightarrow more ionization \rightarrow more current

Possibility to measure lower pressures

1949 : Pierce → explicit description of a harmonic electron trap

 electric field : pure quadrupolar (hyperbolic electrodes)
 magnetic field

 Penning-Pierce"

 trap design

1959 : Dehmelt \rightarrow first high vaccum magnetron trap – trapping time ~10 sec

Birth of the Paul trap

1951 : W. Paul works on the use of multipoles to focus molecular beams

- Beam along the z axis
- Passage through quadrupoles : If beam focused along x \rightarrow defocused along y

But if regular sequence of alternatively converging and diverging lenses → net convergence : "strong focussing principle"

Idea to apply an oscillating field to focus in x and y direction using the same electrodes

1964 : First application of Paul trap : spectroscopy of Be ions

Pioneers of trapping and cooling

Principle of Penning Traps Frans Michel Penning

Storage and Cooling of Atoms Nobel Prize 1997 S. Chu C. Cohen-Tannoudji W. D. Phillips

Bose-Einstein Condensation Nobel Prize 2001 E. Cornell W. Ketterle C. Wieman

<u>Storage and</u> <u>Cooling</u> of Antiprotons Nobel Prize 1984 J. van der Meer C. Rubbia

Storage and Cooling of lons Nobel Prize 1989 H. Dehmelt W. Paul

Main applications of Ion storage devices

NUCLEAR PHYSICS nuclear binding energies laser spectroscopy decay spectroscopy

ATOMIC PHYSICS MOLECULAR & CLUSTER PHYSICS laser + microwave spectroscopy Reactions, life-times

> PLASMA PHYSICS Ordered structures

CHEMISTRY

TEST OF FUNDAMENTAL INTERACTIONS CVC parity violation

CPT, QED

METROLOGY kilogram fine structure constant frequency standards

ION BEAM MANIPULATION cooling accumulation beam-bunching new accelerator concepts ultra-high mass separation

How to trap particles ?

Х

- ideal oscillator
 - constant amplitude
 - evolution around a stable equilibrium
 - constant frequency during the time

 $\vec{F} = -e.\nabla \Phi \propto -\vec{r}$ \rightarrow $\Phi = Ax^2 + By^2 + Cz^2$ A, B, C > 0 to have a minimum

- Laplace's equation :
$$\Delta \Phi = 0$$
 $\frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$ $\Rightarrow A + B + C = 0$
At least one constant <0 \Rightarrow unstable in that coordinate

- Simplification : rotational symmetry along the beam axis z

$$\Phi = \frac{U_0}{2d_0^2} (x^2 + y^2 - 2z^2) = \frac{U_0}{2d_0^2} (\rho^2 - 2z^2)$$

saddle point at the origin - minimum for one coordinate - maximum for one coordinate

How to trap particles ?

- How to generate such a harmonic potential ?

- we want equipotential surfaces : $\rho^2 - 2z^2 = cst \rightarrow$ Hyperboloidal shape

 $\begin{array}{lll} \mbox{geometry of ring electrode} & \rho^2 - \\ \mbox{geometry of endcaps} & \rho^2 - \\ \mbox{characteristic trap dimension} & \mbox{d}_0^2 = \\ \mbox{minimum radius of ring electrode} & \mbox{ρ_0} \\ \mbox{minimum distance between endcaps} & \mbox{$2z_0$} \end{array}$

$$\rho^{2} - 2z^{2} = \rho_{0}^{2}$$

$$\rho^{2} - 2z^{2} = -2z$$

$$d_{0}^{2} = \rho_{0}^{2} + 2z_{0}^{2}$$

$$\rho_{0}$$

- How to trap particles with such a harmonic potential ? **SOLUTION:**

a: superposition of magnetic field in *z*-direction:

b: time varying voltage (RF) between ring electrode and endcaps:

Penning trap

Storage of ions in a Penning trap

Ion the beam axis (ρ =0), the particle oscillates with the axial frequency ω_z :

$$\omega_z = \sqrt{\frac{2qU_0}{md_0^2}}$$

On the plane z=0, the particle moves on a circular orbit with the cyclotron frequency ω_c :

$$\omega_c = \frac{q}{m}B$$

Storage of ions in a Penning trap

Force : quadrupolar potential + Lorentz : $\vec{F} = q\vec{E}(r) + q\vec{v}\otimes\vec{B}$

Equation of motion :

$$\vec{F} = -q \vec{\nabla} \Phi(r) + q \vec{v} \otimes \vec{B} = m \ddot{\vec{r}} \qquad \Phi = \frac{U_0}{2d_0^2} (\rho^2 - 2z^2)$$

Axial direction : B=Bz

 \rightarrow force is purely electrostatic $\rightarrow \ddot{z} = -\omega_z^2 z$ \rightarrow harmonic oscillation in z

$$\omega_z = \sqrt{\frac{2qU_0}{md_0^2}}$$

with $qU_0 > 0$

Radial direction : the x and y component of the force are combination of

- a dominant restraining force due to B (characterized by ω_c)
- a repulsive electrostatic force that tries to push the particles out of the trap
- \rightarrow coupled radial equations

substitution $\Rightarrow \begin{vmatrix} \ddot{x} = \frac{\omega_z^2}{2} x - \omega_c y \\ \ddot{y} = \frac{\omega_z^2}{2} y + \omega_c x \end{vmatrix} \begin{vmatrix} u = x + iy \\ \omega_c = \frac{q}{m} B \\ u(t) = u_0 e^{-i\omega t} \end{vmatrix} i \omega_c \dot{u} - \frac{\omega_z^2}{2} u + \dot{u} = 0$ modified (by E) cyclotron frequency

$$\omega_{+} = \frac{\omega_{c}}{2} + \frac{\omega_{c}}{2} \sqrt{1 - \frac{2\omega_{z}^{2}}{\omega_{c}^{2}}}$$

magnetron frequency

$$\omega_{-} = \frac{\omega_{c}}{2} - \frac{\omega_{c}}{2} \sqrt{1 - \frac{2\omega_{z}^{2}}{\omega_{c}^{2}}}$$

Movement of ions in a Penning trap

3 independent motions at 3 eigenfrequencies

The free cyclotron frequency is inverse proportional to the mass of the ions!

$$\omega_c = qB/m$$

 $\omega_{c}^{2} = \omega_{+}^{2} + \omega_{-}^{2} + \omega_{z}^{2}$ $\omega_{c} = \omega_{+} + \omega_{-}$

- \rightarrow Possibility to "manipulate" the ions
 - by increasing one of the motions (excitations)
 - by reducing one of the motions (cooling)
 - by transferring one motion to another one

Manipulation of ions in a Penning trap

1- Dipolar azimuthal excitation :

either of the ion's radial motions can be excited by an electric dipole field in resonance with the motion frequency \rightarrow amplitude of the motion increases/decreases

Cyclotron excitation:

Magnetron excitation:

2- Quadrupolar azimuthal excitation :

if the two radial motions are excited at their sum frequency, they are coupled

ightarrow continuously converted into each other

Penning trap geometries

Hyperbolical Penning trap

0 5 10 mm

main electrodescorrection electrodes

Storage of ions in a Paul trap

Paul trap geometries

Hyperbolical Paul trap

Storage of ions in a Paul trap

Force : radiofrequency quadrupolar potential
Equation of motion :
$$-q\vec{\nabla}\Phi(r,t) = m\vec{r}$$

 $\Phi = \frac{U_0 + V_0 \cos \Omega t}{2d_0^2}(\rho^2 - 2z^2)$
 $\left(\frac{q(U_0 + V_0 \cos \Omega t)}{m\rho_0^2}\rho + \dot{\rho} = 0 \right)$
 $-\frac{q(U_0 + V_0 \cos \Omega t)}{m\rho_0^2}z + \ddot{z} = 0$
 $\left(\frac{substitution}{z + \frac{\Omega}{2}t} - a_z = -2a_e = -\frac{8qU_0}{mr_0^2\Omega^2}\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
Mathieu differential equation
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
Mathieu differential equation
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + (a_u - 2q_u \cos 2\tau)u = 0\right)$
 $\left(\frac{d^2u}{d\tau^2} + ($

Ion trajectory in a Paul trap and Stability

$$u(t) \propto \left[1 - \frac{q_u}{2} \cos \Omega t\right] \cos(\omega_u t - \rho) = 0$$

$$arpi_{\!u}\!:$$
 macro motion (slow)
 $arOmega:$ micro motion (fast, RF)

-Stability depends on q and a values

- \rightarrow depends on : q/m, r₀, Ω , U₀ and V₀
- \rightarrow Stability diagram

$$a_z = -2a_r = -\frac{8qU_0}{mr_0^2\Omega^2}$$
$$q_z = -2q_r = \frac{4qV_0}{mr_0^2\Omega^2}$$

m/q : given by the physics r_0 : dimension of the trap U_0 , V_0 : applied voltages Ω : applied frequency

you are able to choose $r_0, \, U_0, \, V_0$ and Ω to have a stable solution for a given m/q

What is cooling ?

Cooling = enhancement of the phase space density of a beam

i.e. simultaneous reduction of size and angular divergence (transverse momentum)

i.e. reduction of its emittance

But : Liouville's theorem :

"For a given energy (velocity), the emittance e (mm.mrad) -the product of size and angular divergence- must be constant if there are only conservative forces"

Solution : cooling possible if external interaction is appliedfor ions : → with electronselectron cooling→ with atomsbuffer gas cooling→ with laserslaser cooling

• • •

Why Cooling ?

Cooling is important for :

- the beam preparation (e.g. by use of RFQ -RadioFrequency Quadrupole- Paul trap)
- \rightarrow to bunch the beam (ovoid losses)
 - continuous injection

→to inject properly the ions in a trap (small trapping potentials) pulsed injection

- the manipulation of the ions in the trap (e.g. mass selective centering in Penning tarp)

Increase :	- accuracy
	- sensitivity
	- efficiency

Quadrupole Mass Analyzer

Masses determine the atomic and nuclear binding energies \rightarrow reflect all forces in the atom/nucleus.

$N \cdot O + Z \cdot O + Z \cdot O$ - binding energy	General physics & chemistry Nuclear structure physics - separation of isobars Astrophysics - separation of isomers Weak interaction studies	$\frac{\delta m/m}{\leq 10^{-5}}$ $\leq 10^{-6}$ $\leq 10^{-7}$
	Metrology - fundamental constants Neutrino physics	≤ 10 ⁻⁹
	CPT tests	≤ 10 ⁻¹⁰
	QED in highly-charged ions - separation of atomic states	≤ 10 ⁻¹¹

What does a relative uncertainty of 10⁻⁸ mean?

weight (empty): 164000 kg

Or one (little) step walking around the Earth!

Comparison *B*_{nucl}: Theory-experiment

10 MeV difference for masses of 10-100 GeV \rightarrow 10⁻² to 10⁻³

→Nuclear structure effects like shell closures become visible.

> →1949: The shell model and magic numbers (Göppert-Mayer + Jensen).

Atoms

1 and 2) production of the ions of interest and first selection

3- beam preparation

- timing cycles : [50 – 500]msec

 \rightarrow bunches

- low trapping voltages : few Volts
 - \rightarrow small energy dispersion i.e. small emittance

→ radiofrequency quadrupole RFQ (Paul trap)

General Purpose Ion Buncher DESIR@SPIRAL2

~1 µsec

50-500 msec

4- mass measurement

\rightarrow preparation Penning trap

- Buffer-gas (He) in preparation trap
- Well-controlled conditions

buffer-gas (He)
 contaminant ions
 lons of interest

→ preparation Penning trap 4- mass measurement Dipolar excitation at magnetron frequency (≈ mass independent)

Quadrupolar excitation at the cyclotron frequency mass selective recentering large bandwidth \rightarrow resolving power ~10⁵ (to separate isobars)

Ejection of the ions through a diaphgram

G. Savard et al., Phys. Lett. A 158 (1991) 247.

4- mass measurement

→ measurement Penning trap

In practice :

- frequency scan around $\omega_{\! c}$
- ejection of the nuclei
- measurement of their time-of-flight

When
$$\omega_c = \frac{q}{m}B \rightarrow$$
 nuclei at the larger radius

4- mass measurement

- Each point corresponds to an excitation at a given frequency

- Minimum TOF $\rightarrow \omega_c$

$$-\omega_c = \frac{q}{m}B$$

→need to know B with the same precision...

 - in practice, unknown masses are always measured relative to known reference(s)

$$\frac{\omega_{c,ref}}{\omega_{c,unknown}} = \frac{m_{unknown} - m_e}{m_{ref} - m_e} \sim \frac{m_{unknown}}{m_{ref}}$$
-resolving power : $R = \frac{m}{\Delta m} = \frac{\Delta \omega_c}{\omega_c}$

- For each point, the nucleus is excited during a time $\mathrm{T}_{\mathrm{exc}}$

$$\Delta \omega_c = \frac{1}{T_{exc}}$$

$$\Rightarrow \text{higher precision} = \text{longer}$$
excitation time

The University of Manchester

4. Results

The line-width of the resonance curve depends on the excitation time (T_q) of the quadrupolar excitation $\mathbb{R} \sim T_q$

Questions ?

1) What are these two resonances observed when measuring the mass of ⁶⁸Cu? the ground state and... an isomeric state 2) Which one is the ground and the isomeric state? Why? ground state = lowest mass \rightarrow higher frequency 3) What is the observed resolving power? $R=w/\Lambda w=1338940/5~2.7.10^5 \rightarrow ~254 \text{ keV}$ 4) What was the excitation T_{exc} time to get this line width? $\Lambda w=5Hz \rightarrow Texc \sim 200 msec$ 5) The reference ions was ⁸⁵Rb with mass *m*_{85.Rb} = 84,911789732(14) u. The measured frequency ratio was 0,80000818(20) for 68gCu 0,800009879(19) for ^{68m}Cu. Calculate for both states the mass excess in keV (ME = (m - A)u ; 1u = 931.494028 MeV) $m(^{68}Cu_{qs}) = R^*m(^{85}Rb) = 67.929610959 u$ → ME gs=-65.5669 MeV $m(^{68}Cu_{iso}) = R^*m(^{85}Rb) = 67.930380340$ u → ME iso=-64.8503 MeV 6) What is the excitation energy of the isomeric state? $E_{exc} = ME_{iso} - ME_{gs} = 717 \text{ keV}$

The TOF-ICR technique is very powerfull but.... it is a destructive method \rightarrow to detect a ion, you have to extract it from the trap....

Advantage : need only one ion to measure a mass whereas ~300 are needed with the classical TOF-ICR technique But: very small signal → noise → delicate electronics with very high Q fa

But: very small signal → noise → delicate electronics with very high Q factor (use of cryogenic technics...)

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

F. Wienholtz et al., Nature 498, 346 (2013)

ISOLTRAP (CERN), TITAN (TRIUMF)

i- Principle

Time-of-Flight separation in a linear trap

MR-TOF-MS - few words

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

VOLUME 84, NUMBER 22 PHYSICAL REVIEW LETTERS

29 MAY 2000

Shape Coexistence and the N = 28 Shell Closure Far from Stability

F. Sarazin,¹ H. Savajols,¹ W. Mittig,¹ F. Nowacki,² N. A. Orr,³ Z. Ren,¹ P. Roussel-Chomaz,¹ G. Auger,¹
 D. Baiborodin,⁴ A. V. Belozyorov,⁵ C. Borcea,⁶ E. Caurier,⁷ Z. Dlouhý,⁴ A. Gillibert,⁸ A. S. Lalleman,¹ M. Lewitowicz,¹
 S. M. Lukyanov,⁵ F. de Oliveira,¹ Y. E. Penionzhkevich,⁵ D. Ridikas,¹ H. Sakuraï,⁹ O. Tarasov,⁵ and A. de Vismes¹
 ¹GANIL, BP 5027, F-14076 Caen Cedex 05, France

 change in the slope of the S_{2n} is an indication of a shell closure (or more generally, a change in the shell structure)

→observed at N=20 and N=28 in Ca isotopes

Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz¹, D. Beck², K. Blaum³, Ch. Borgmann³, M. Breitenfeldt⁴, R. B. Cakirli^{3,5}, S. George¹, F. Herfurth², J. D. Holt^{6,7}, M. Kowalska⁸, S. Kreim^{3,8}, D. Lunney⁹, V. Manea⁹, J. Menéndez^{6,7}, D. Neidherr², M. Rosenbusch¹, L. Schweikhard¹, A. Schwenk^{7,6}, J. Simonis^{6,7}, J. Stanja¹⁰, R. N. Wolf¹ & K. Zuber¹⁰

Purification of ISOL type RIB

→ PIPERADE project for DESIR/SPIRAL2

Test of the fundamental interactions

Standard model

• contains all les rules concerning the reactions between quarks and/or leptons, interacting through the electroweak interaction and/or quantum chromodynamics

quarks are eigenstates of the strong interaction, not of the weak interaction

> Unitarity of CKM matrix : $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

 \clubsuit relation between V_{ud} and ft for the Fermi transitions :

Test of the fundamental interactions

Study of the $0^+ \rightarrow 0^+$ Fermi transitions

♦ Verification of the CVC hypothesis by comparing ft for different nuclei

- $\stackrel{\text{\tiny V}}{\hookrightarrow}$ Extraction of V_{ud}
- ♦ Verification of the unitarity of the CKM matrix

Needed precisions

• overall precision : $Ft = (3072.08 \pm 0.79) s$ for 13 transitions \Rightarrow 1.3 * 10⁻⁴

 \rightarrow Study on exotic nuclei of very high purity

Test of the fundamental interactions

• JYFLTRAP

T. Eronen et al., 2006

PIPERADE @ DESIR-SPIRAL2

Goals:

• Very high Resolving power (> 10⁵) to clean isobars not cleaned by the HRS + isomers

 \rightarrow Penning traps can reach a resolution (up to 10⁸) **but** are limited in terms of number of ions

• Purifying very large samples (accept 10^5 to 10^6 per bunch $\rightarrow 10^7$ to 10^8 pps)

Increasing the number of ions makes the re-centering inefficient

SIMBUCA code, S. Van Gorp et al., NIM A 638, 192200 (2011)

Purification of ISOL type RIB

PIPERADE @ DESIR-SPIRAL2

Solutions

- Large inner radius (32 mm) and length (~10 cm)
 - \rightarrow Decrease the cloud density
 - \rightarrow Limit space charge effects

Purification of ISOL type RIB

PIPERADE @ DESIR-SPIRAL2

Solutions

- Large inner radius (32 mm) and length
 - \rightarrow Decrease the cloud density
 - ightarrow Limit space charge effects
- Broad-band FT-ICR detection
 → Identify online abundant contaminants

"FT-ICR" : Fourier Transform Ion Cyclotron Resonance

PIPERADE @ DESIR-SPIRAL2

If you know the frequency of the most abundant contaminant... (thanks to the FT-ICR)

Alternative techniques...

Simulations (MPIK and CENBG) and tests are ongoing to find new separation methods (phase splitting, SIMCO, axial coupling, rotating wall, ...)

Purification of ISOL type RIB

- ➢ Febiad Ion source :
 - emittance caracterized
- RFQ-GPIB "General Purpose Ion Buncher"
 - on test

Penning Trap

- simulations underway
- mechanical design ready
- construction end of 2015
- magnet ordered (delivery expected 06/16)
- tests@CENBG in 2016/2017

Why Beta-Delayed Neutron Spectroscopy ?

For the most neutron-rich nuclei :

- large Q_{β} - small S_n $\rightarrow \beta$ -delayed neutron emission

Experimental data are needed for :

- nuclear structure :

- astrophysics : r process nucleosynthesis of elements heavier than Fe

Emitter

- nuclear energy : reactor design, performance and safety needed accuracy - delayed neutron fraction \rightarrow Pn 1-5 % - average energy !! \rightarrow energy spectra < 20%

properties of neutron rich nuclei

- ...

- nuclei at the drip line

- nuclei at the closed shell

but neutrons are always difficult to measure....

Detection of Neutrons

Sub-atomic particles have to interact with their environment to be "detected" \rightarrow ionization

But neutrons are... neutral 😳

 \rightarrow no Coulomb interaction

 \rightarrow always an "indirect measurement"

low energy	\rightarrow capture	$n+^{3}He \rightarrow {}^{3}H+^{1}H$
	ightarrow activation	⁵⁶ Fe(n,p) → ⁵⁶ Mn

-high energy

→ (in)elastic scattering → recoiling particles : p...

Compromises to do on :

- efficiency
- resolution
- threshold

Is it possible to performed beta-delayed neutron spectroscopy... without detecting the neutrons ??

Principle :

This is possible because nuclei are trapped in a free environment
→ no "matrix" effects...

Beta Delayed Neutron Spectroscopy... without detecting neutrons 😳

Advantages : no need to detect neutons

- total efficiency (β -recoil) : up to 5%
- energy resolution (FWHM) : ~3%
- neutron energy threshold :
- Gaussian detector response
- almost background free
- no need for γ/n discrimination

$$\begin{split} \epsilon_{total}(\beta\&n) &: ~15\%@1 \text{ MeV} \\ resolution : ~10\% \\ n-threshold : ~300 \text{ keV} \\ \end{split}$$

~30keV

ε_{total}(β&n) : ~5%@1 MeV resolution : ~5% n-threshold : ~100 keV

^AZ \rightarrow ^A(Z+1)^{*} + β ⁻ + ν \rightarrow ^{A-1}(Z+1) + n

Seems to be a good idea... Is it feasible ?

Proof of principle

PRL 110, 092501 (2013)	PHYSICAL	REVIEW	LETTERS
------------------------	----------	--------	---------

week ending 1 MARCH 2013

β-Delayed Neutron Spectroscopy Using Trapped Radioactive Ions

R. M. Yee,^{1,2} N. D. Scielzo,¹ P. F. Bertone,³ F. Buchinger,⁴ S. Caldwell,^{3,5} J. A. Clark,³ C. M. Deibel,^{3,6} J. Fallis,^{3,7} J. P. Greene,³ S. Gulick,⁴ D. Lascar,^{3,8} A. F. Levand,³ G. Li,^{3,4} E. B. Norman,² M. Pedretti,¹ G. Savard,^{3,5} R. E. Segel,⁸ K. S. Sharma,^{3,7} M. G. Sternberg,^{3,5} J. Van Schelt,^{3,5} and B. J. Zabransky³
¹Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
²Department of Nuclear Engineering, University of California, Berkeley, California 94720, USA
³Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
⁴Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
⁶Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
⁷Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
⁸Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA (Received 4 May 2012; published 26 February 2013)

	present setup	dedicated setup
- total efficiency :	0.05 %	5%
 energy resolution 	~ 10 %	3%
- n threshold	200 keV	50 keV

FIG. 2 (color online). Recoil-ion TOF spectrum collected with a 30 ion/s $^{137}I^+$ beam. The TOF spectrum of the ^{136}Xe recoil ions from βn emission, highlighted by the dotted box, is shown in the inset.

FIG. 3 (color online). Comparison of the βn -energy spectrum for ¹³⁷I measured here with a known spectrum from Ref. [47]

Thanks for your attention

Thanks to the organizers

Thanks to K. Blaum, D. Lunney and the PIPERADE team for materials