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• Spin asymmetry of DIS cross sections 
       Need polarized beams and polarized targets 
 
• Gluon spin contribution to nucleon spin, 
  via photon gluon fusion  charmed mesons  p K pairs 
           Need kaon identification 
 
• Strange quark spin contribution to nucleon spin, via kaon 

production (K=u-sbar) 
          Need kaon identification 

 
• Exclusive reactions, like Pion polarisability, 3D structure of the 

nucleons: Need photon detection, recoil proton detection around 
the target, need full Monte-Carlo description of apparatus 
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A few processes and the detectors needed 
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Who are the players? 

Beam: 27.5 GeV e±; <50>% polarization 

Target: (un)-polarized gas targets; <85%> polarization 

Beam: 160 GeV m; 75% polarization 

Target: 6LiD;       50% polarization 

Two high-resolution  

4 GeV spectrometers 

Hall A 

Large acceptance spect. 

electron/photon beams 

Hall B 

7 GeV spectrometer,  

1.8 GeV spectrometer,  

large installation experiments 

Hall C 

Beam: ≤6 GeV e-; 85% polarization 

Target: polarized targets 3He, 6LiD, NH3  

STAR 

Beams: 250 GeV pp; <60>% polarization 

Lumi: 1.2 1031cm-2s-1 
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COMPASS  (NA58 CERN experiment): 

 COmmon 

  Muon 

   Proton 

    Apparatus for  

     Structure and  

      Spectroscopy 

 

COMPASS is the largest surface experiment at CERN 
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• ~ 230 members 
• 13 countries 
• 28 universities and 

research institutes 



COMPASS – some facts 
• Located at CERN North Area beam line  
• Possible beams: µ+, µ-, p+, p-, K  → Several physics programs 

– 1996:  COMPASS proposal 

– 2001:  commissioning run 

 Experiments with muon beam 
 
 
Nucleon  spin structure: 
        Gluon polarization 
        u,d,s  quark flavor decomposition  
        of the nucleon spin 
        Transverse spin 
        Quark transverse momentum 
 
 
‘3D’ structure of the nucleon (DVCS) 
Quark transverse momentum distribution 
Strangeness in the nucleon 

 Experiments with hadron beams 
 
 
 Pion polarizability  
 Search for exotic states: 

 Light meson spectroscopy 
 Baryon spectroscopy 

 
 
 
 

 Pion and kaon polarizabilities 
 Universality of transverse 

momentum distribution-polarized 
Drell-Yan 

  

COMPASS - I   (2002 – 2011) 

COMPASS - II   (2012 – 2018) 



COMPASS – some facts 
• Targets 

 Experiments with muon beam 

 

 

 Nucleon Spin structure 

 

 p, d polarized target (L & T)  

 

 

 Unpolarised (3D, strangeness …) 

 

 2.5m long LH2 target 

 

 

 Experiments with hadron beams 

 

 

 Hadron spectroscopy 

 

 40cm LH2 or nuclear targets 

 

 

 Polarized Drell-Yan studies 

 

 Polarized target (T) 

COMPASS - I   (2002 – 2011) 

COMPASS - II   (2012 – 2017) 

Reconfigurable target region - versatile experimental setup   
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Where is COMPASS located? View from SW 

SPS experiment in the North Area at the CERN Prevessin site 

SPS 

LHC 

Meyrin site 

Prevessin site 
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What does COMPASS look like? 

Flexible fixed-target experiment, two-stage forward large-angle 
spectrometer 

 

Our size 
beam 

Target area 

First stage: large 
angle acceptance 

Second stage: small 
angle acceptance 
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Where does the COMPASS beam come from? 
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Types of beams 

The beam line can be operated in three different modes, 

resulting in the desired type of beam: 

• Hadrons:  p<280 GeV/c (limited by magnet strength) 

  <108 hadrons/SPS cycle at COMPASS 
  spot size: ≈3x3 mm  

  p, K, p 

• Muons:  p=60-190 GeV/c 

  1.2·1013 protons/SPS cycle on T6 target 

  2·108 muons/SPS cycle at COMPASS 

  note: about 1 muon per 100,000 protons! 

  spot size: ≈8x8 mm 

• Electrons:  special case: tertiary beam (p=40 GeV/c, 1·103 e/s) 
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Beam optics 

Alternating  sequence of focussing and defocussing quadrupole 
magnets. When a quadrupole is focussing in the horizontal plane, 
it is defocussing in the vertical plane (and vice versa). 

Hadron beam Muon beam 

horizontal 

vertical 
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Making the beam 

• ~1.1 km long beamline from SPS to the experiment 
     Normal conducting quadrupoles to focus,   
     and dipoles to guide  the beam from the SPS to COMPASS  
 
• SPS  400 GeV  protons interact with a primary target  

(500 mm long beryllium) creating mainly pions and kaons 
 

• About 10% of these pions and kaons decay along a 700m long 
line producing muons 
 

• A ~10 m long beryllium absorber filters the rest of the beam 
and only muons are left 
 

• The muon beam is naturally polarized due to parity violation in 
the weak decay of the spinless pion  
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• Quadrupole magnets:  about 10 tons, 150V, 750A, 113kW 

• Dipoles magnets: about 25 tons, bend the beam up with an 
angle smaller than 2 degrees 

• The ionisation chamber monitors beam intensity. Capacitive 
plates measure induced charge. 

• The primary beam from the SPS has an energy of 1.6 MJ/spill 
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Some facts 
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The target area 

Different targets are used depending on the physics goals: 

• Solid materials (carbon, copper or lead) 

• Liquid hydrogen 

• Polarized target (6LiD or NH3) 

Plateform for 2m long superconducting 
solenoid for polarized target 

4m long double barrel (ToF)  
Around liquid H2 target 
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Flexible target area 

2m absorber,  
Inserted behind 
polarized target magnet 

DVCS 2012 and 2016 
exclusive processes 
with ToF for recoil 
particle 

ZOOM of target area 
 
Silicons 

2011-Polarized deep inelastic 
Superconducting magnet 
For polarized target 

Polarized Drell-Yan  
2014-2015 

ToF double barrel: Recoil Proton Detector Dipole 1 

Dipole 2 
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Liquid hydrogen target 

The hydrogen target contains about 5 l 
of liquid at a temperature of about 
20K. When the target is warmed up to 
room temperature, five 1000 l tanks 
are needed to store the hydrogen gas.  
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• 1.2 m long,  40 mm diameter, 5-6 l 

• Temperature ~50mK  with a record of 30 mK 

• 6LiD, deuterated lithium – deuterium acts as target 

• NH3 ammonia – hydrogen acts as target 

• Polarization is obtained by Dynamic Nuclear Polarization  

• Three things are needed: high magnetic field to align the spins, a 
very low temperature to reduce thermal energy and microwaves 
to transfer spin from the electrons to the nucleons 

• A 2.5 T solenoid field is applied by a superconducting magnet 
with a 10-4 homogeneity over the target volume 
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Polarized target 



Polarized target system 

Supercond. solenoid             2.5T 
and dipole magnet   0.6T 
acceptance      ± 180 mrad 

3He – 4He dilution 
refrigerator (T~50mK) 

μ 

 6LiD/NH3 (d/p) 

 50/90% polarization 
 40/16% dilution factor 

Recontructed interaction vertices 



G.K. Mallot 04/03/2014 Boston Univ - CERN Physics 

Polarized target system 

Superconducting 2.5T solenoid + 
dipole, large aperture 
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The COMPASS setup – Three main parts 

Target  
region 

Large 
Angle 
Spectrometer 

Small 
Angle 
Spectrometer 

SM1 

SM2 

 

Dipole 1 
1 Tm 

Dipole 2 
4 Tm 

Target solenoid 
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The COMPASS setup – Space resolution 

Target  
region 

Large 
Angle 
Spectrometer 

Small 
Angle 
Spectrometer 

Dipole1 

Dipole 2 

Space resolution is function of the distance to the 
target, and to the center of the beam 
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Online display 

Target 

Dipole1 RICH Dipole2 



 Scintillating Fibers 

• Specifications 

– 9 stations 

– 0.5, 0.75 and and 1.0 mm fibers 

– 2668 channels 

– 8-14 layers per projection 

 

• Performances 

– Time resolution: 350-400 ps 

– Spatial resolution: 130-210 µm 

– Efficiency: 97-99% 

– High-rate capability 

 

Very good time resolution, high-rate capability 
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 Silicons 

• Specifications  

– 5x7 cm2, 1280 and 1024 strips 

– 5 N-cooled stations 

– 52 µ and 55 µ pitch 

– 2 projections per detector 

– Designed for high fluencies 

– R/O: APV25 chip, 128 ch 

• Performances 

– Time resolution: 1.4 ns 

– Spatial resolution: 6 – 11 µm 

Very good  spatial resolution  
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GASEOUS DETECTORS: Proportional Chamber 
• A charged particle ionizes the gas, creating 

electron-ion pairs 
• Electrons drift towards the anode wire.  
• Close to the wire, electrical field is sufficiently 

high (above 10 kV/cm) for electrons to gain 
energy to ionize further  and create an 
avalanche ⇒ exponential increase of number 
of electron-ion pairs. 

Cylindrical geometry is not the only one able to generate strong electric field: 

parallel plate strip hole 
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MicroPattern Gaseous Detectors (MPGD): Micromegas 

ionisation region (300V in few mm): 

low field, drift of e-  

  amplification region (400V in ~100 mm): 

   high field electrical field: avalanche 

micromesh 

• e-/ion pairs are formed in the low field, ionisation region. 

 

• e- avalanches created in the amplification region are collected on micro strips 

 

• while ions created in the amplification region are collected by the micromesh; 

they drift within less than 100mm, i.e., less than 100 ns.  

 

                           A very high rate detector :  1MHz/cm2 

 

Other properties:      Low material budget 

                                   Spatial resolution ~70 mm 

        Time resolution ~10 ns 
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Micromegas discharge probability 

Discharge probability 

Detector gain 

15 GeV p at 2MHz 

• Extensive studies on discharge rates and their possible reduction 

• High dependence on gain 

• One of the findings was the relation with gas mixture mass 

         Gas mixtures: high <Z>  give higher discharge rates 

Mixtures based on 

Neon  <Z>~10-14  

Mixtures based  

on Argon <Z>~20  
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Discharge probability and particle type 

• Highly ionising particles give higher discharge rates 

• Rates differ by orders of magnitude 

in Ne-C2H6-CF4, G=7000 
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Micromegas in COMPASS 

First Micromegas used in a High Energy Experiment 

Detector 40x40 cm2 Electronics 
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Hybrid ‘Micromegas+GEM’ 

Insert a GEM foil to realize a preamplification 

12 detectors inserted in 

the spectrometer 2015 

No more discharges: operating in highly ionizing environment 
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Thin metal-coated polymer foil pierced by a high density of holes (50-100/mm2) 
Typical geometry: 5 mm Cu on 50 mm Kapton,  70 mm holes at 140 mm pitch 
 

F. Sauli, Nucl. Instrum. Methods A386(1997)531 

70 µm 

140 µm 

MPGD: GEM-Gas Electron Multiplier 
 



/74 29/09/2015 COMPASS UNCHAINED 32 

GEM detectors 

• Specifications 

– 3 GEM stages 

– Active area: 31x31 cm2 

– Dead area diameter: 5 cm 

– Minimal material budget 

– 11 stations (22 planes) 

– Two sets of 768 perpendicular 
strips 

– 400 µ pitch X and Y 

 

• Specific features 

– 2-dim read-out 

– Very large integration  

– APV chip = 128 ch 
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GEM detectors: performances 
  

Space resolution: 68 µ  

                                 Time resolution: 12 ns  

                                                                    Efficiency: > 97% 

First GEM detectors used in a High Energy Experiment 
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• Specifications 

– Active size:        100x100 mm2 

– Strip: 2 x 512, pitch=400 µ 

– Pixel area: 32x32 mm2 

– Pixel size: 1 mm2 

– APV chip R/O, 128 ch. 

• Performances 

Very Small Angle Trackers - 
PixelGEMs 

Good space resolution, minimized material along the beam  
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Measure arrival time of electrons at sense  
wire relative to a time t0.  
Need a trigger (bunch crossing or scintillator). 
Drift velocity independent from E. 

Spatial information obtained by measuring time of drift of electrons 

Advantages: smaller number of electronics channels. 

Resolution determined by diffusion, 
primary ionization statistics, path 
fluctuations and electronics. 

F. Sauli, NIM 156(1978)147 



stop

start

t

t

Ddtvs

Drift Chambers 
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Large Angle Trackers – Drift Chambers 

• Specifications 

– Sensitive area: 180x127 cm2 

– 3 stations (8 planes/station) 

– Dead area diameter: 30 cm 

– Drift cell: 7mm(pitch) x8 mm2 

• Performances 

– Efficiency: > 97% 

– Space resolution: 170 µ 

• Specific features 

– Located near high magnetic field  

– (up to 0.3 T) 

– Operate in a high-rate environment 

 
Large areas. Very high-rate 
capability - up to 700 kHz/ch! 

700 kHz 
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RING IMAGING CHERENKOV: RICH 

COMPASS UNCHAINED 

RICH 

29/09/2015 

Used to discriminate between various particles : p, K, p… 
by measuring their velocity 
 
Based on the Cerenkov effect 
Emission of Cerenkov light in a medium chosen for its refractive index n 

Light emitted above a certain momentum threshold 
Here: large volume of gas C4F10 
 



Velocity determination 
The Cherenkov  Effect 

A charged particle travelling in a 
dielectric medium faster than light in 
that medium, emits a cone of light with 
an opening 




n

1
)cos( 

n

c
v 

• Measure opening angle   
 determine  v =c 

 
• Knowing momentum p (spectrometer), 
  obtain particle mass  M 

   threshold: p  ~2 GeV/c 
                  K ~ 10 GeV/c 
                  p ~ 18 GeV/c 
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COMPASS RICH detector  

5
 m

 

Photon detectors: 
CsI MWPC 

mirror 
wall 

vessel 

radiator: 
C4F10 

detection of  
VUV photons 
(165-200 nm)‏ 

searching for rings 



/74 29/09/2015 COMPASS UNCHAINED 40 

CALORIMETER: ENERGY DETERMINATION 

Measure energy of electrons, positrons, gammas 

 

e- 

e+ 

e-  or e+  
 

e- 

massive material (lead glass) 

Electromagnetic 
calorimeter 

μ 

μ 

P 
p- 

p+ p+ 

po 

Protons, pions & kaons  initiate hadronic cascades.   

Hadronic  
calorimeter 

Sandwich lead-scintillator 
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Electromagnetic calorimeters (x2) 

• ECAL1 
– 1500 channels 

– Pb0 modules (3 dimensions) 

• 18-20 X0 

– Energy range: 0.2-60 GeV 

 

• ECAL2 
– 2180 Pb0 type modules 

– 888 “Shashlik” type (Pb/Scint) 

• (radiation hardness) 

– Energy range: 1-200 GeV  

Detect photons and electrons 
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ECAL performances 
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sE = 7.8 MeV sE = 3.9 MeV 

Dt = 1 ns 

p0 linearity (±1 MeV) 

Good time resolution, reasonable energy resolution 

ECAL1 ECAL2 

preliminary 

preliminary 

preliminary 

preliminary 
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Hadron calorimeter 

• Hadron calorimeters (x2) 

 

– HCAL1: 480 channels (20x28) 

• Each block: 15x15 cm2 

 

 

 

 

– HCAL2: 216 ch (22x10) 

• Each block: 20x20 cm2 

 

 

 

 

 

Fe-Scintillator sandwich (x40) 

%6.7
%59


EE

s

%6.4
%65


EE

s

Detect hadrons = maximize INTERACTION length  

S.Platchkov, AFTER workshop 
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Recoil Proton 
Detection. ToF: 
2 barrels 
around target 

μ’ 
  

μ 
p 

DVCS : μ  p   μ’ p  

    
 

Dipole 1 

RICH 

Recoil Proton Detection and Time of Flight 
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Recoil Proton Detection and Time of Flight 

Two concentric barrels of scintillators 

tup
B 

tdo
B 

 

tup
A 

zB tB 

tdo
A 

zA tA 

target 

LB 

ℓB 

LA ℓA 

Measure 4 times :  tdo
A   , tup

A   , tdo
B   ,  tup

B 

and corresponding amplitudes 
 
 reconstruct positions and energy 
 β  = LAB/ToF 

Time resolution :   200 ps in 4m long outer barrel, 350ps  in inner 

Position resolution:  2-3 cm 

Momentum range  270 MeV – 2 GeV 
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End of the visit 

29/09/2015 COMPASS UNCHAINED 46 


