

most slides from E. Bielert, A. Bressan, F. Kunne, G.Mallot

A few processes and the detectors needed

- Spin asymmetry of DIS cross sections
 Need polarized beams and polarized targets
- Gluon spin contribution to nucleon spin,
 via photon gluon fusion → charmed mesons → π K pairs
 Need kaon identification
- Strange quark spin contribution to nucleon spin, via kaon production (K=u-sbar) Need kaon identification
- Exclusive reactions, like Pion polarisability, 3D structure of the nucleons: Need photon detection, recoil proton detection around the target, need full Monte-Carlo description of apparatus

29/09/2015

COMPASS is the largest surface experiment at CERN

COMPASS – some facts

- Located at CERN North Area beam line
- Possible beams: μ^+ , μ^- , π^+ , π^- , K \rightarrow Several physics programs
 - 1996: COMPASS proposal
 - 2001: commissioning run

Experiments with muon beam	Experiments with hadron beam
COMPASS - I (2002 – 2011)	
Nucleon spin structure:	Pion polarizability
Gluon polarization	Search for exotic states:
u,d,s quark flavor decomposition	Light meson spectroscopy
of the nucleon spin	 Baryon spectroscopy
Transverse spin	
Quark transverse momentum	
COMPASS - II (2012 – 2018)	
'3D' structure of the nucleon (DVCS) Quark transverse momentum distribution	 Pion and kaon polarizabilities Universality of transverse

momentum distribution-polarized

Drell-Yan

Strangeness in the nucleon

COMPASS – some facts

• Targets

Experiments with muon beam	Experiments with hadron beams
COMPASS - I (2002 – 2011)	
 Nucleon Spin structure 	 Hadron spectroscopy
p, d polarized target (L & T)	40cm LH2 or nuclear targets
COMPASS - II (2012 – 2017)	
 Unpolarised (3D, strangeness) 	 Polarized Drell-Yan studies

2.5m long LH2 target

Polarized target (T)

Reconfigurable target region - versatile experimental setup

Where is COMPASS located? View from SW

SPS experiment in the North Area at the CERN Prevessin site

Flexible fixed-target experiment, two-stage forward large-anglespectrometerSecond stage: small

Where does the COMPASS beam come from?

The beam line can be operated in three different modes, resulting in the desired type of beam:

- Hadrons: p<280 GeV/c (limited by magnet strength)
 <10⁸ hadrons/SPS cycle at COMPASS spot size: ≈3x3 mm
 - π**, K, p**
- Electrons: special case: tertiary beam (p=40 GeV/c, 1·10³ e/s)

Beam optics

Alternating sequence of focussing and defocussing quadrupole magnets. When a quadrupole is focussing in the horizontal plane, it is defocussing in the vertical plane (and vice versa).

Making the beam

- ~1.1 km long beamline from SPS to the experiment Normal conducting quadrupoles to focus, and dipoles to guide the beam from the SPS to COMPASS
- SPS 400 GeV protons interact with a primary target (500 mm long beryllium) creating mainly pions and kaons
- About 10% of these pions and kaons decay along a 700m long line producing muons
- A ~10 m long beryllium absorber filters the rest of the beam and only muons are left
- The muon beam is naturally polarized due to parity violation in \bullet 29/0 the weak decay of the spinless pion

Some facts

- Quadrupole magnets: about 10 tons, 150V, 750A, 113kW
- Dipoles magnets: about 25 tons, bend the beam up with an angle smaller than 2 degrees
- The ionisation chamber monitors beam intensity. Capacitive plates measure induced charge.
- The primary beam from the SPS has an energy of 1.6 MJ/spill

Different targets are used depending on the physics goals:

- Solid materials (carbon, copper or lead)
- Liquid hydrogen
- Polarized target (⁶LiD or NH₃)

Flexible target area

DVCS 2012 and 2016 exclusive processes with ToF for recoil particle

Dipole 2

Dipole 1

2011-Polarized deep inelastic Superconducting magnet For polarized target

> Polarized Drell-Yan 2014-2015

COMPASS UNCHAINED

2m absorber, Inserted behind polarized target magnet

ToF double barrel: Recoil Proton Detector

ZOOM of target area

Silicons

29/09/2015

15

Liquid hydrogen target

The hydrogen target contains about 5 l of liquid at a temperature of about 20K. When the target is warmed up to room temperature, five 1000 l tanks are needed to store the hydrogen gas.

Polarized target

- 1.2 m long, 40 mm diameter, 5-6 l
- Temperature ~50mK with a record of 30 mK
- ⁶LiD, deuterated lithium deuterium acts as target
- NH₃ ammonia hydrogen acts as target
- Polarization is obtained by Dynamic Nuclear Polarization
- Three things are needed: high magnetic field to align the spins, a very low temperature to reduce thermal energy and microwaves to transfer spin from the electrons to the nucleons
- A 2.5 T solenoid field is applied by a superconducting magnet with a 10⁻⁴ homogeneity over the target volume

COMPASS

Polarized target system

Polarized target system

COMPASS

The COMPASS setup – Three main parts

The COMPASS setup – Space resolution

Space resolution is function of the distance to the target, and to the center of the beam

Online display

Scintillating Fibers

- Specifications
 - 9 stations
 - 0.5, 0.75 and and 1.0 mm fibers
 - 2668 channels
 - 8-14 layers per projection

- Time resolution: 350-400 ps
- Spatial resolution: 130-210 μm
- Efficiency: 97-99%
- High-rate capability

Very good time resolution, high-rate capability

Silicons

- Specifications
 - 5x7 cm², 1280 and 1024 strips
 - 5 N-cooled stations
 - 52 μ and 55 μ pitch
 - 2 projections per detector
 - Designed for high fluencies
 - R/O: APV25 chip, 128 ch
- Performances
 - Time resolution: 1.4 ns
 - Spatial resolution: 6 11 μm

Very good spatial resolution

GASEOUS DETECTORS: Proportional Chamber

- A charged particle ionizes the gas, creating electron-ion pairs
- Electrons drift towards the anode wire.
- Close to the wire, electrical field is sufficiently high (above 10 kV/cm) for electrons to gain energy to ionize further and create an avalanche ⇒ exponential increase of number of electron-ion pairs.

$$E(r) = \frac{CV_0}{2\pi\varepsilon_0} \cdot \frac{1}{r}$$
$$V(r) = \frac{CV_0}{2\pi\varepsilon_0} \cdot \ln \frac{r}{a}$$

C – capacitance/unit length

$\frac{1}{b_0} \cdot \ln \frac{1}{a} \qquad C = \frac{2\pi\varepsilon_0}{\ln(b/a)}$

Cylindrical geometry is not the only one able to generate strong electric field:

COMPASS UNCHAINED

MicroPattern Gaseous Detectors (MPGD): Micromegas

- e⁻/ion pairs are formed in the low field, ionisation region.
- e⁻ avalanches created in the amplification region are collected on micro strips
- while ions created in the amplification region are collected by the micromesh; they drift within less than $100\mu m$, i.e., less than 100 ns.

→ A very high rate detector : 1MHz/cm²

Other properties:	Low material budget
	Spatial resolution ~70 µm
	Time resolution ~10 ns

Micromegas discharge probability

- Extensive studies on discharge rates and their possible reduction
- High dependence on gain
- One of the findings was the relation with gas mixture mass
 Gas mixtures: high <Z> give higher discharge rates

Discharge probability and particle type

Particules	\mathcal{P}
α (²⁴¹ Am)	$>10^{-3}$
hadrons 3-15 GeV $(T9)$	$\approx 10^{-6}$
muons 190 GeV $(M2)$	$< 5 \times 10^{-10}$

in Ne-C2H6-CF4, G=7000

- Highly ionising particles give higher discharge rates
- Rates differ by orders of magnitude

Micromegas in COMPASS

First Micromegas used in a High Energy Experiment

29/09/2015

COMPASS UNCHAINED

Hybrid 'Micromegas+GEM'

Insert a GEM foil to realize a preamplification

No more discharges: operating in highly ionizing environment

12 detectors inserted in the spectrometer 2015

MPGD: GEM-Gas Electron Multiplier

Thin metal-coated polymer foil pierced by a high density of holes (50-100/mm²) Typical geometry: 5 μm Cu on 50 μm Kapton, 70 μm holes at 140 μm pitch

GEM detectors

- Specifications
 - 3 GEM stages
 - Active area: 31x31 cm²
 - Dead area diameter: 5 cm
 - Minimal material budget
 - 11 stations (22 planes)
 - Two sets of 768 perpendicular strips
 - 400 μ pitch X and Y
- Specific features
 - 2-dim read-out
 - Very large integration
 - APV chip = 128 ch

29/09/2015

GEM detectors: performances

Space resolution: 68 μ Time resolution: 12 ns Efficiency: > 97%

29/09/2015

Very Small Angle Trackers -PixelGEMs

- Specifications
 - Active size: 100x100 mm²
 - Strip: 2 x 512, pitch=400 μ
 - Pixel area: 32x32 mm²
 - Pixel size: 1 mm²
 - APV chip R/O, 128 ch.
- Performances

Good space resolution, minimized material along the beam

Drift Chambers

Spatial information obtained by measuring time of drift of electrons

Measure arrival time of electrons at sense wire relative to a time t_0 . Need a trigger (bunch crossing or scintillator). Drift velocity independent from E.

 $v_D dt$

t _{start}

s =

Advantages: smaller number of electronics channels.

Resolution determined by diffusion, primary ionization statistics, path fluctuations and electronics.

Large Angle Trackers – Drift Chambers

- Specifications
 - Sensitive area: 180x127 cm²
 - 3 stations (8 planes/station)
 - Dead area diameter: 30 cm
 - Drift cell: 7mm(pitch) x8 mm²
- Performances
 - Efficiency: > 97%
 - Space resolution: 170 μ
- Specific features
 - Located near high magnetic field
 - (up to 0.3 T)
 - Operate in a high-rate environment

Large areas. Very high-rate capability - up to 700 kHz/ch!

29/09/2015

RING IMAGING CHERENKOV: RICH

Used to discriminate between various particles : π , K, p... by measuring their velocity

Based on the Cerenkov effect Emission of Cerenkov light in a medium chosen for its refractive index n

Light emitted above a certain momentum threshold Here: large volume of gas C4F10

Velocity determination

The Cherenkov Effect

A charged particle travelling in a dielectric medium faster than light in that medium, emits a cone of light with an opening 1

$$\cos(\theta) = \frac{1}{n\beta}$$

 $v > \frac{c}{n}$

- Measure opening angle θ → determine v = β c
- Knowing momentum *p* (spectrometer),
- \rightarrow obtain particle mass M

threshold: π ~2 GeV/c K ~ 10 GeV/c p ~ 18 GeV/c

COMPASS RICH detector

CALORIMETER: ENERGY DETERMINATION

Electromagnetic calorimeter

Hadronic calorimeter

Measure energy of electrons, positrons, gammas e^{-} or $e^{+} \rightarrow$ r massive material (lead glass) protons, pions & kaons initiate hadronic cascades.<math>protons, pions & kaons initiate hadronic cascades.

Electromagnetic calorimeters (x2)

- ECAL1
 - 1500 channels
 - Pb0 modules (3 dimensions)
 - 18-20 X₀
 - Energy range: 0.2-60 GeV

• ECAL2

- 2180 Pb0 type modules
- 888 "Shashlik" type (Pb/Scint)
 - (radiation hardness)
- Energy range: 1-200 GeV

Detect photons and electrons

XXXXXXXX

ECAL performances

Good time resolution, reasonable energy resolution

29/09/2015

Hadron calorimeter

- Hadron calorimeters (x2)
 - HCAL1: 480 channels (20x28)
 - Each block: 15x15 cm²

 $\frac{\sigma}{E} = \frac{59\%}{\sqrt{E}} \oplus 7.6\%$

HCAL2: 216 ch (22x10)

Each block: 20x20 cm²

$$\frac{\sigma}{E} = \frac{65\%}{\sqrt{E}} \oplus 4.6\%$$

Fe-Scintillator sandwich (x40)

Detect hadrons = maximize INTERACTION length

29/09/2015

Recoil Proton Detection and Time of Flight

Recoil Proton Detection and Time of Flight

Time resolution :	200 ps in 4m long outer barrel, 350ps in inner
Position resolution:	2-3 cm
Momentum range	270 MeV – 2 GeV

End of the visit