Electromagnetic Spectrometers & Separators

B.Jacquot// Ganil

Ecole Joliot Curie 2015

Т

Eletromagnetic spectrometer

- Eliminate primary beam (~ 10¹¹⁻¹³ particles per second)
- Help to identify the reaction products
- Measure Energy with very good resolution
- Select very rare events (selectivity)

Is a magnetic spectrometer really needed?

Without a magnetic spectrometer : limitation? (selectivity)

With a magnetic spectrometer : limitation ? (efficiency)

Other possible limitations (primary beam intensity, ion identification, detector resolution)

Equations for an ion in a magnetic field :

 -1: Many particles are lost in the magnet (very bad)
 -2: Trajectories are complex (bad) Xfinal =f(Bρ, θi, φi, X0,Y0)

- Final position xf depend on the

- Bp (good for identification or separation)
- position & Angle after the reaction (bad)

Beam divergence after target 2 problems solved with focusing lenses

Imagine than focusing lenses exist like in light optics

With Focusing lenses $Xf = F(B\rho, \lambda, \lambda, \lambda)$

Xf

less unknowns ! Less beam losses!!

At one location s (the detector location, called focal plan) The trajectoires are independent of the angles Θ , Θ And the initial position is x0=0, y0=0

Xf=F(Bρ, λί, λί, ΧQ, YQ)

How to construct a Focusing lens for ions : Magnet with 4 poles (+,-,+,-) F=q (v × B)

The quadrupole magnet is focusing in HORIZONTAL PLAN Nota: In the center, the force is zero

If you tune i1 and i2 with opposite polarities, the beam can be focused in X and Y

B.Jacquot / JC2015

Beam optics (basics)

Focalisation with quadrupolesDONEDispersion with dipoleDONEMagnetic rigidity : $B\rho = \gamma Mv/Q = P/Q$ DONE

- Particles coordinates
- Equations in field B & E
- 1rst order approximation :Optical Matrices
- Resolution
- Angular Acceptance
- Bp Acceptance

Beam optics notation

The reference particle : $B_{\rho_0} = P_0 / Q_0 = B_{dipole} \times R_{dipole}$

it is traveling in the Center of the beam lines So $X_0=0$, $Y_0=0$ « angles » : X'_0=0 , Y'_0=0

At the location 50, a particle is represented by a vector Z(50)

Z=(x,x', y,y', l, δ) 6Dim

$$\vec{Z} = \begin{pmatrix} z1 \\ z2 \\ z3 \\ z4 \\ z5 \\ z6 \end{pmatrix} \begin{pmatrix} x \\ x' = \frac{dx}{ds} \\ y \\ y' = \frac{dy}{ds} \\ l = v_0(T - T_0) \\ \delta = \frac{B\rho - B\rho_0}{B\rho_0} \end{pmatrix} = \begin{pmatrix} horizontal & displacement \\ horizontal "angle " \\ vertical & displacement \\ vertical & angle \\ longitudinal & difference \\ "momentum(B\rho)" & deviation \end{pmatrix}$$

Trajectory equations for 1 particle

How to compute x(s),y(s) ?

We use a curvilinear Reference Frame which follow the reference particle

 $\frac{d}{dt} [m\gamma \mathbf{v}] = q \cdot (\mathbf{E} + \mathbf{v} \times \mathbf{B})$

Coordinate change t \implies s x(t),y(t) => x(s),y(s) We want to compute x,y at a detector location s=s₀

Trajectories : exact equations

$$\frac{d}{ds}\left[m\gamma \dot{x}\right] = m\gamma \dot{s}(1+\frac{x}{\rho}) + q(t'Ex+y'B_s - \dot{s}(1+\frac{x}{\rho}) \cdot B_y)$$
$$\frac{d}{ds}\left[m\gamma \dot{y}\right] = q(t'E_y + (1+\frac{x}{\rho}) \cdot B_x - x' \cdot B_s)$$
$$\frac{d}{ds}\left[m\gamma \dot{s}(1+\frac{x}{\rho})\right] = -\frac{m\gamma \dot{x}}{\rho} + q(t'E_s + x' \cdot B_y - y' \cdot B_x)$$

Trajectory simulation (x(s), y(s))

1) knowing B(x,y,s) AND E(x,y,s,t) [field map 3D]

2) Integrate the equations for **ALL the particles** (computer+ Numerical method: Runge-kutta)

Generally we can do <u>simpler</u> Matrix approach (1rst order approximation) B.Jacquot// Ganil

The transport Matrix R : allow the computation of a coordinate of a particle at the end of a spectrometer

at

 $Zin = (x, x', y, y', I, \delta)_0$ at the entrance $Zout = (x, x', y, y', |, \delta)_1$

the exit

$$\overline{Zout} = R.Zin$$

$$\begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{1} = \begin{bmatrix} R_{11} R_{12} & 0 & 0 & 0 & R_{16} \\ R_{21} R_{22} & 0 & 0 & R_{26} \\ 0 & 0 & R_{33} R_{31} & 0 & 0 \\ 0 & 0 & R_{43} R_{44} & 0 & 0 \\ R_{51} R_{52} & 0 & 0 & R_{55} R_{56} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ x' \\ y \\ y' \\ l \\ \delta \end{bmatrix}_{0} \qquad b = \frac{p - p_{0}}{p_{0}}$$

Interpretation of R

$$Rij = \left(\frac{\partial Zi \text{ out}}{\partial Zj \text{ in}}\right)$$
ex:

$$R_{11} = \left(\frac{\partial Z_1}{\partial Z_1}\right) = \left(\frac{\partial x \text{ out}}{\partial x \text{ in}}\right) \quad R_{12} = \left(\frac{\partial Z_1}{\partial Z_2}\right) = \left(\frac{\partial x \text{ out}}{\partial x' \text{ in}}\right)$$

$$R_{16} = \left(\frac{\partial Z_1}{\partial Z_6}\right) = \left(\frac{\partial x \text{ out}}{\partial \delta \text{ in}}\right)$$

The transport Matrix R=Rij is related to

- spectrometer geometry
- tuning of the quadrupoles

SPECTROMETER TRANSPORT MATRIX R allow the simulation of 1 trajectory (**easily**)

XFinal = R_{11} Xtarget + $R_{16} \delta$ $\approx R_{16} \delta$ $\delta = (B\rho - B\rho_0) / B\rho_0$

$$R_{16} = \left(\frac{\partial x_F}{\partial \delta_{T \, \text{arg}et}}\right)$$

B.Jacquot// Ganil

Bpo = Bdipole. Rdipole 20

More on Transport Matrices: how to compute the Rmatrix for a spectrometer ?

The total transport matrix R is the product of the matrices representing each elements (drift ,quad, dipole)

The beam size : important for the design

- A particle has 1 trajectory : Z = Z(s)

We are not interested by only 1 trajectory/particle

A beam is an ellipsoid in 6D with a given size

The beam size(width) has to be simulated to avoid beam losses

Ox (horizontal width) , **Oy** (vertical width)

Focusing a beam in a simulation get a small size at some point S

Angular distribution (x') in a beam line ? The beam ellipse is rotating in (x, x'=dx/ds)

...The Area of the beam ellipse (x, x') is a constant in a beam line... but, Area is not constant in a target

B.Jacquot// Ganil

Resolution of a separator

M,Q,V

$$R_{16} = \left(\frac{\partial Z_1}{\partial Z_6}\right) = \left(\frac{\partial x \text{ out}}{\partial \delta \text{ in}}\right)$$

R=1/100 Resolution means : capacity for a spectrometer to distinguish two beams with 1% Bp difference

The resolution (separation)

is optimal at the focus point (size is minimal)

The 2 beams with \neq rigidities

$$B\rho_{ref} = B\rho_0 = B \times R_{dipole}$$
$$B\rho = B\rho_0(1-\delta)$$

The 2 beams are separated « at the focal plan » But not everywhere !!

Resolution (R= σx/R16) is optimal When σx is small

and R16(dispersion) is large

Angular acceptance

The reaction products exit from the target with an

Angular dispersion

Vacuum chamber limitation induces beam losses = less transmission

« Bp » Acceptance

The particles are dispersed by dipole magnets with $\delta = [B\rho - B\rho 0] / B\rho 0$

 $X_{\text{final}} = R_{16} \delta$

Beam pipe limit: Xmax

28

How to simulate an experiment with a spectrometer

🗧 LISE++ [Noname]	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		a X	
File Settings Options Calculations Utilities (D-Plot 20-Plot Database Help)																		
Ler \$\$ 2000 · · · · · · · · · · · · · · · · ·																		
Projectile ⁷⁸ Kr ³⁶⁺	PROJE	CTILE	î C		1						87 Le	⁸⁸ Te	⁸⁹ Tc	90 T C	91Tc	92Tc	^	
70 MeV/u 1 pnA Fragment 32 S16+	FRAGA	AENT	and the second s						~									
To Target Be		1 and				And a			18 C		86 M.o	87.Mo	⁸⁸ Mo	89Mo	90 M o	91Mo	3	
Stinner	1200	and the second s					H											
Del Destat Brho			.	<u></u>				2244		N.	10000	26416		Stars	80au	90.512		
-48 31 +48									1. 399(H)	See March		and the	2,000		0. ND	1.000		
-40 V +40					🖶 Physical	calculator									\mathbf{X}			
1 micron					AE	lement Z	0					iter/into	Si 300	micton	7	89Zr	1	
Wedge						S 16	16	/ Table of	F 🗘	Z 🔿	Ener	ov Bemain (MeV/u				
Dipole 2 2:2305 Tm				76 Y		Stable	<u> </u>	Nuclide			Ener	gy Loss	383.0	1 MeV		68y	1	
M Material 2 Si					Europe C	10.0044	14.505	e and e	11.000	o AMAN	Energ	gy Strag.(sigm	a) 0.0087	953 MeV/u				
300 micron					Energy (12.0044	Tm	THE C	11.333	5 Mal	Angu	ılar Strag.(sigm	na) 12.1	2 mrad		97	-	
option: A1900_2004A 4.62%		198r	11786	1,196	Erbo C	47 72EE	INDE	Volooitu (× 4 7700		Later	ral spread (sign	ma) 0.441	37 micron:	s ór	•rSr	1	
Toyou (Allo					P C	47.7555	MeV/c	Rata (0.15901	16	Bmo	(ror u=2)	1 0	100				
				74Rb	Aller C	1 4730.00	Morro	Gamma (1 0128	37	- Equ Cha	ulibrium values arge State <q></q>	s for material	ar	Rb	⁸⁶ Rb	4	
					Alters			Europe D			Qb	(sigma)	0.5					
	70 K r	71K7	72Kr	73Kr	Block	Z\Thick	ness	MeV/u	MeV Me	eV <q></q>	- Thi	ckness	888	mg/cm2	G	85Kr	1	larasov et Al.
					Materi	al 2 Si 300 mic	cron	0	0 383	81 0.00			1.000					
										Ran	Range and Energy Loss to Si							
		30Bt	71Br	72Br						e F	Range dRange (sigma) 3r					⁸⁴ Br		
										C	C 158 342 0 38324 micron							
	68 Se	88 S e	^{IB} Se ⁷⁰ Se ⁷¹ Se												Se	⁸³ Se		
IN2P3												Energy Rema	ain. U.UUU	MeV/u	x			
NETITUT NATIONAL DE PHYSICLE NUCLEAIRE	-	619 a	20.0	-							M	aterial thickne for energy re	est 158.3	micron				
EI DE PHYSIQUE DES PARIQUES	or As	BOAS	an As	TAS											- ⁴ S	•²As		
											Ene	ulation method	d of Energy	strangling 1	-			Downloaded
	66 Ga	67GE	66 Gie	⁶⁸ Ge		8	Print	7 Help	X Quit	1	Cha	arge States	3 Angula	straggling 1	Ge	⁸¹ Ge		
								-		1	1							
	85 G a	86 Ga	87 Ga	68 Ga	⁶⁹ Ga	70Ga	71Ga	72Ga	73Ga	74Ga	75Ga	76Ga	11 _{Ga}	78Ga	79Ga	⁸⁰ Ga		
							70-	74	70			75.	-	-	70	70-		
	64Zn	asX4	66Zn	67Zn	68Zn	⁸⁹ Zn	7®Zn	^m Zn	⁷² Zn	73Zn	74Zn	/sZn	76Zn	//Zn	78Zn	⁷⁹ Zn		
																	~	
rragmentation	5																2	

HOMEWORK :

Exercise 1: Imagine a spectrometer with a dispersion R16=2 m (=2cm/%) and beam width σx =0.5 mm on the focal plan detector, What is the resolution R in Bρ?

Exercise 2 :

A spectrometer (R16=1.5 cm/%) is tuned for $B\rho 0=2.0$ T.m

A particle arrives on the focal plane at Xf=3cm,

What is the particle rigidity?

Exercise 3 :

How to measure the dispersion (R16) in a spectrometer ?

Part 1 :

- The need of focalisation (quad)
- Magnetic rigidity define the trajectory
- Dynamics can be approximated with a matrix R

End part n°1

Part 2: technical details and examples

- Resume of part 1
- Fragment separators (E>100 MeV/A)
- Recoil Spectrometers (E<10 MeV/A)
- Diagnostics and tuning

B.Jacquot// Ganil

$$o = \gamma \frac{mv}{q}$$

B

Part n°1 : Spectrometer components

Magnetic Dipole : 2 poles : By= B0

Magnetic quadrupole : 4 poles

By = G x

focusing is good for Angular acceptance and Resolution

Beam optics coordinates

 At the location S, a particle is represented by a vector Z(s) = (x, x', y, y', I, δ)

$$\vec{Z} = \begin{pmatrix} z1\\ z2\\ z3\\ z4\\ z5\\ z6 \end{pmatrix} = \begin{pmatrix} x\\ x' = \frac{dx}{ds}\\ y\\ y' = \frac{dx}{ds}\\ l = v_0(T - T_0)\\ \delta = \frac{B\rho - B\rho_0}{B\rho_0} \end{pmatrix} = \begin{pmatrix} horizontal & displacement \\ horizontal "angle "\\ vertical & displacement \\ vertical & angle \\ longitudinal & difference \\ "momentum(B\rho)" & deviation \end{pmatrix}$$

HORIZONTAL ANGLE X'= dX/ds=tan(θ) $\approx \theta$

33

Magnetic Spectrometer : A tool for identification

Suppose 2 ions beams

Fragment Separators : 100-500 MeV/A

Reaction : in-flight fragmentation (0° degree)

Goal : 1) Primary beam suppression (Separator) 2) Identification of particles 3) purification (selection of some reaction products)

Fragment separator

2 symmetric sections : **« ACHROMATIC** » MAGNETIC SPECTROMETER

From the top

Fragment separator : principle

2 Trajectories in a Fragments separator

Fragments separators : dispersiv section optics

1 Selection in Fragments separators is not sufficient

Magnetic separator with degrador increase the purification (Z dependance)

We consider 2 isobares (A=34,Z=14) (A=34,Z=15) with same Bp

2 Selections in Fragments separators Bρ + Z (degrador)

Selection in Fragments separators & identification

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

BIG RIPS (Riken) quads

Beam very rigid : $B\rho = \gamma mV/Q = 7 T.m$ (Beam 300MeV/A) with high v

Super-ferric quadrupole triplet :

Very strong focusing : supraconducting coils (NbTi), with pole (Fe)

Figure 22: Schematic view of the RIKEN prototype quadrupole triplet (left side) and its installation into the cryostat (right side) [24].

Supra-conducting coils (i very large, B close to saturation)
Raperture very large =0.1m ; Bpole-max# 2 Teslas
GradientMax=2T/0.1m=20.T/m

Comparaison of the fragment separators

	Lise3	FRS GSI Mode1 or mode2	A1900 MSU //NSCL	BigRips Riken
Angular Acceptance	1.6 mstrd	0.32mstrd or 3.4 mstrd	8mstrd ±40* ±50mrad	10 mstrd ±50* ± 60mrad
Β ρ Acceptance	±2.5%	± 2.0%	± 3.0%	± 3.0%
R16 (m=cm/%) Bp Resolution Length	1.7 m 1/600 42 m	6.8m 1/1600 or1/160 69m	5.95m 1/2900 35m	3.3 m 1/3300 77 m
Bpmax	4.3T.m //3.2T.m	18T.m or 8.6T.m	6.3 T.m	9. T.m
Comments	2 Dipôles + Wien filter	4 dipoles	4 dipoles	1 pre- separator (2 dipoles) + 1 separator (4 dipoles)

 \bigcirc

« **Recoil » spectrometer** : at low energy (1-10MeV/A)

Reactions : fusion-evaporation, transfer,...

Goals :

Very efficient primary beam suppression
 Help identification

RITU

Many experimental problems => A Large variety of devices

Recoil spectrometer at low energy (1-10MeV/A)

* Velocity filter

ship@GSI : 1MeV/A (heavy superheavy)

* « RMS » (Recoil Mass Spectrometer)

(fusion evaporation,...)

* Gas filled(Dubna, Darmstadt, Berkeley, Jyvaskyla, Riken)
 1-5MeV/A Fusion evaporation
 super-heavy production)

 * Large Acceptance & Ray tracing Spectrometer
 Ganil (VAMOS), Legnaro (Prisma), NSCL (S800) (transfer reactions, fission,..)

. . . .

1^{rst} problem at E<15 MeV/A : charge state distributions

Stripping Probability

Many charge states

many sources of pollution of the focal plan detectors (Bρ is not a perfect for selection)

« RMS like Spectro.» Implemented in 6 different Laboratoires (Oak ridge, Argonne, Legnaro, Jaeri, New Dehli, Vancouver) :

For Fusion Reaction : the Velocity is a good parameter for the selection

Electrostatic devices are efficient (but sparking)

RMS (Recoil « Mass » Spectrometer) : beam optics , M/Q dependance

Gas filled separator for heavy ion

At low energy : too Many charge states Beam charge are spilled over the focal plan

$$< q >_{gas} \propto v Z^{1/3}$$

$$< B\rho >= \frac{m}{< q >} v \propto m Z^{-1/3}$$

In the gaz, the collisionS make the charge State oscillating around an average <q> « Charge focusing »+ selection Mass = good rejection

Large acceptance spectro

Optics is *non-linear* in x,x',y,y' (Aberrations come with large angle x',y')

$B\rho = B\rho_0 (1+x/R_{16} + a x'^2 + b x^2 + c x^3 + ...)$

Vamos example : In the focal plane, 7 quantities are measured : T, x1, y1, x2, y2, ΔE , E

T : Multi Wire PPAC

x1,y1 x2,y2:

 $\frac{\mathbf{x'}=(\mathbf{x}_1-\mathbf{x}_2)/d = \tan(\theta)}{\mathbf{y'}=(\mathbf{y}_1-\mathbf{y}_2)/d = \tan(\phi)}$

△E,E : ionisation CHAMBER

SPECTROMETER TUNING AND DIAGNOSTICS

Tuning rely on - B field measurement - Beam measurement

Beam Diagnostics : dedicated Robust detectors for beam tuning

Statistical information on the beam $\overline{(\mathbf{X}, \sigma \mathbf{x}, \sigma \mathbf{T}, < \mathbf{I} > ...}$

1rst step : check the primary beam

profil measurement (alignement, focus)
 intensity check

- intensity check

SPECTROMETER TUNING

Many Profil monitors

for different beam intensities

Rotating wire ibeam# 10¹²⁻¹⁴pps (Cern)

Wires i# 10⁹⁻¹¹pps « Gas Profil »
i# 10³⁻⁷ pps

Gas ArCO₂ +HV

(Ganil)

Specific technologies adapted for ≠(intensities, Energies) Proportional counter

ellipsoid area = $\pi \Delta x \cdot \Delta x'$ = Emittance

Emittance = constant if Energy=constant

SPECTROMETER TUNING : check the intensity Beam diagnostics : Faraday cup Intensity measurement

Particle per second

Npps = IA/Qe = IμA 10⁶/[Q 1.6 10⁻¹⁹]

B.Jacquot// Ganil

SPECTROMETER TUNING Adjusting field in dipoles and quadrupoles For adjusting dipole field (B) or quad Gradient (G) adjust *i* in the coils

B=B(i) and Gradient = G(i) are given by the constructor

PROBLEM : hysteresis curve

B=B(i)

The current *i* gives an information About B but

B1 B2 i

but for one i, 2 possibilities B1 and B2

for reproducibility

Solutions

- Raise the current to imax, then get down & adjust i :

- Measure B with Hall probe or NMR probes (dipole)

SPECTROMETER TUNING Hall Probes : measuring field in dipole

The polarity of the Hall voltage for a copper probe shows that electrons are the charge carriers.

Hyperphysics (**gsu**)

LOW COST, But not very precise NMR probes are more precise (Resolution=10-5)

Spectrometer tuning : before experiments

Quad Gradient : By=G(*i*coil) . X

G_Q1(*icoil*) given by constructorB_dipole(*icoil*) measured on test bench

R*dipole* has to be known (curvature of the ideal trajectory R_{dipole}=L/ θ)

Beam optics (Design step)

« beam optics » (quad setting for focusing on detectors, target..)

Compute G_Q1 ,G_Q2... For Bpref=1 Tm (simulation)

to get the right focus on the detectors

Experiment preparation : step 0

-Evaluate the $B\rho$ of the desired Ion beam

-Which beam optics to be used ? (detector location?,...)

Spectrometer tuning : during the experiment

Step 1 : Check the beam alignement **Step 2** : check the focus on target

Step 3: set the quad & dipole magnets (icoils)
With the « Control command software »
Select
the quad setting :« the beam optics » (focus on your detector)
the Rigidity Bp0 of the desired ions : B= Bp0 /R

The Software Computes the fields by scaling: G_Q1= G_Q1* Bp0/BpRef (beam optics N°xxx) Bdipole= Bp0/Rdipole The software computes the currents *icoils* For the quads & dipoles coils then, check the dipole field Bdipole with probes

End

References:

The historitical paper for fragment separators:

[1] R.Anne, D.Bazin, A.C.Mueller, J.C.Jacmart and M.Langevin, "The achromatic spectrometer LISE at GANIL", NIM A257 (1987) 215-232.

More on wedge (degrador)

[1] H.Geissel, G.Munzenberg, K.Riisager, "Secondary exotic nuclear beams", Annu. Rev. Nucl. Part. Sci. 45 (1995) 163-203.

Interesting details in : Kubo et Al, Bigrips NIM

Large acceptance spectrometer : M. Rejmund, Nucl. Instr. and Meth. A (2011)

Beam diagnostics Peter Forck : Joint University Accelerator School 2006

Part of this lecture inspired byB. Jacquot: JoliotCurie school 2008

Many Thanks to Catherina Michelagnoli,... to my collegues from Riken, GSI,NSCL, Jyvaskyla, Triumf, Dubna,Legnaro, and Ganil⁶⁹

Back-up slides

- More on matrices
- Real Perfomance of a set-up (spectrometer+detector)
- How to optimise beam quality& Acceptance
- The Lise fragment separator & the wien filter
- Why the degrador thickness (Wedge) is not constant in a fragment separator ?
- Non linear effect in optical systems
- Examples

More on Transport Matrices: Rmatrix for a straight section L (drift) Particle Evolution in drift length between s1 & s2 : x=x(s) y=y(s) ?????? x2=x1+tan(θ1)(s1-s2) **x2** $\theta \mathbf{1} = \theta \mathbf{2}$ **y2=y1+tan(φ1)(s1-s2)** $\phi \mathbf{1} = \phi \mathbf{2}$ **x1** nota: tan(01)=dx1/ds=x1' and (s2-s1)=L **s**2 **s**1 $= \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 1 \end{bmatrix}$ $L \quad 0 \quad 0 \quad 0$ 0 1 0 0 0 0 x1' y1 y1' $0 \ 0 \ 1 \ L \ 0 \ 0$ $R_{d1} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix}$ v2' 0 0 0 0 1 L/γ^2 0 0 0 0 0 0 0 10

The beam : N particles in a 6D ellipsoid

$$\sigma_x^2 = \sigma_{xx} = \sigma_{11} = \frac{1}{N} \sum_{\alpha = 1, \dots, N} (x_{\alpha} - \overline{x}) . (x_{\alpha} - \overline{x})$$

$$\sigma_{xx'} = \sigma_{12} = \frac{1}{N} \sum_{\alpha=1,..N} (x_{\alpha} - \overline{x}) . (x'_{\alpha} - \overline{x'})$$

Done by simulation code

 Oij is a statistical definition of the beam

2) An optical code Computes OFinal with the R matrix at the end of the spectrometer

R Matrix allows the simulation

a) -of the beam size $\sigma(s)$ b) -of one trajectory Z(s)
Real performance of a (spectro+detector) depend on the experiment

efficiency = Edetector x Transmission_spectro

Rejection = primary beam on target / primary particle on final detector

Selectivity = ability to see the desired events in the background (coincidence, identification)

Sensitivity = the smallest measurable cross section

Maximal intensity of incident primary beam

- thermal limit on target (rotative or not,....)
- maximal intensity on detection sytem
- beam losses in spectro (electrostatic sparking,....)
- radioprotection

More on Fragment separators how to optimise selection in separator

big spot : $\Delta x_0 = \pm 5$ mm

The spot size Δx_{target} on target defines the beam size at focal plan $\Delta X_{focal} = R_{11} \cdot \Delta x_{target}$ Big spot on Target Decrease the selection (Worse resolution) Resolution=4 ΔX_{focal} / R_{16} =4 $R_{11} \cdot \Delta x_{target}$ / R_{16}

CHECK FOCUS ON TARGET (Δx_{target} small !!

More on Fragment separators

LISE separator with Wien filter (ganil)

The velocity filter (so-called Wien filter)

The wien filter use Electric field $F = F_{E} + F_{B} = q(E + v_{x}B)$ + magnetic field

How to get a Fragment separator achromatic

Trajectories are Independant from δ (achromatic) IF **R**16 (A+B)=0

Dipole geometry **and** quad setting are adusted to get **R**16 (A+B)=0

	$\begin{bmatrix} R^{B}_{11} & 0 & 0 & 0 & 0 & R^{B}_{16} \end{bmatrix}$		$\begin{bmatrix} R^{A}_{11} & 0 & 0 & 0 & 0 & R^{A}_{16} \end{bmatrix}$
	$R_{21} R_{22} 0 0 0 R_{26}$		$R_{21} R_{22} 0 0 0 R_{26}$
)=	$0 0 R_{33} 0 0 0$		$0 0 R_{33} 0 0 0$
	$0 0 R_{43} R_{44} 0 0$	•	$0 0 R_{43} R_{44} 0 0$
	L^{B}		L^{A}
			0 0 0 0 0 1

 $\mathbf{R}(A+B) = \mathbf{R}(B) \times \mathbf{R}(A) =$

Achromaticity if R16 (A+B) = R16 (B)+R16(A) R11(B) = 0

1) Why a degrador (wedge) in not uniform in x :

Goal of the degrador :

All the same particles (Z,A) should re-focus at end of the B stage whatever their $B\rho(\delta) =>$ achromatic degrador (Wedge) : R16(A+B)=0

Adding a uniform degrador makes the optics chromatics at the End

Before degrador δ_A , the momentum deviation of the 2 trajectories is $\delta_1 = -\Delta p/p0$ After degrador $\delta_B = [p0 - \Delta p - \Delta pw - (p0 - \Delta pw)]/[p0 - \Delta pw]$ $\delta_B = [-\Delta p]/[p0 - \Delta pw]$ $\delta_A \neq \delta_B$

if the Optics is achromatic without degrador ($\delta A = \delta B$)

Optics will not be achromatic with a uniform degrador with $\delta A \neq \delta B$

Beam emittance : (# optical quality)

The emittance is a volume of phase space occupied by a beam 6 Dimensions

For pratical reasons we use the subspace measurement (x,x') & (y,y')

Horizontal Emittance : area in (x,x')

Vertical Emittance : area in (y,y') Longitudinal Emittance : area in (energy ,time)

$$\epsilon \text{ rms}=4(\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2)^{1/2}$$

 $\epsilon \text{ = area of the ellipse ,which}$

Liouville theoreme : emittance is conserved in a beam line..

Example n°1: fragments separator @Riken(Japan) E#300-500 MeV/A L=77m 6 dipoles magnets, 42 quadrupole magnet

Superferric quads B.Jacquot// Ganil

Suppression of the primary beam (many dipoles, degrador selection)

Help the selection of very rare nuclei Selection of 4-5 nuclei Identification (DE-TOF)

BigRIPS : Tandem (Two-stage) Separator

TOF, Bp, $\Delta E \rightarrow Z$, A/Q (A, Q), P

Fig. 2. A schematic diagram of the RI-beam tagging in the BigRIPS separator.

Quadrupole technology

1 :Normal conducting quad hyperbolic pole (Fe) coils (Cu)

G~ 10 Tesla/m

Larger Aperture

or/and

Higher strength

COILS GROUND

COLLAR TAPERED KEY

BEARING STRIPS

2 : Superferric quad hyperbolic pole (Fe) coils (NbTi)

Higher Gradient , larger aperture possible (A1900, BigRips, Synchro.) G~ 20-30 Tesla/m

> **3 : Superconducting quad** No pole !!!!!! cos(2θ) coils (NbTi)

G~ 40-200 Tesla/m (Cern LHC...)

Example n°2: VAMOS Spectrometer L=8 meters, 1 dipole, rotative platform

300 fission fragments id.

B.Jacquot// Ganil

Suppression of the primary beam (by rotation) Selection of 20-300 nuclei Help Identification (ΔE -TOF, position and angle measurements) **Primay beam** target spectrometer **Focal plan** otation detector 84

Example n°2: VAMOS Identification

Drift Ch.

(X,X',Y,Y').

In the focal plane, 7 quantities are measured : T, x1, y1, x2, y2, ΔE , E

T : Multi Wire PPAC

x1,y1 x2,y2:

> $x'=(x_1-x_2)/d = tan(\theta)$ $y'=(y_1-y_2)/d = tan(\phi)$

∆E,E : ionisation CHAMBER

 $B\rho = B \rho_0 (1 + x / R_{16} + a x'^2 + b x^2 + c x^3 +)$

Equation is non-linear in x,x',y,y' (Aberrations)

Ionis. Ch.

(**∆E**,E)

B.Jacquot// Ganil

MWPPAC

(Tof)

Non linear effects in optical system

1rst order

$$\overrightarrow{Z_2} = R. \overrightarrow{Z_2} + ... \mathcal{E}$$

for large angle, large $B\rho$ deviation 2^{nd} order, third order is required.

$$Z2_{i} = \sum_{j=1}^{6} R_{ij} \quad .Z1_{j} + \sum_{k=1}^{6} \sum_{j=1}^{6} T_{ijk} \quad Z1_{j} . Z1_{k} +$$

1rst order 2nd order

Linear Approximation holds for small angle, small Bp deviation... (#30mrad, δ <2%)

 $Z1 = (x, x', y, y', l, \delta)_1$

Effects of second order

-Inclination of focal plane

-the Focusing strenght of quads is bp dependent

-Large angle particles are not well focused

Non linearities (ABERRATIONS) come

- with large acceptance (large x' and large δ)
- but also, with field defects in quads and dipoles

Non linear effects in optical system

Ex1: Inclination α of the focal in a spectrometer

tg (α) = R16 / T126.R11

-Choice of the dipole Angle

-Magnetic sextupole has to be used for correction

Ex2: distorsion of beam ellipseIn phase spaceInducing Distribution wings

Optical aberrations (non linearities)

Non linear effects in optical system

Beam optics is linear when x < 5cm x'<30mrad $\delta<2\%$ Beam is a nice ellipse in phase space, R matrix is sufficient

If |X'| > 30mrad or $|\delta| > 2\%$ Beam are not well represented by an ellipse

R matrix is **not sufficient** for the calculation (field maps + tracking with « Runge kutta » simulation needed)

Example n°2: VAMOS Spectrometer

Particle identification Method (M,q,Z)

120

1) Measurement of the time of flight (TOF) => velocity
2) Measurement of the position x_{focal} after the spectrometer => Bp= B x Rdipole (1+ x / R₁₆ +...)
3) Measurement of the energy loss ΔE in a thin detector (Ionization Chamber)
4) Measurement of residual energy Er (Ekinetic= (γ-1)M c²]
y v = T fligth /L₀ M/q M/q= Bp /γv Z Z# k ΔE M₁ = (Er+ ΔE)/[c² (γ-1)]

finally

Q= M₁ / [M/q] M= [M/q]. Q Z # k(E) ΔE 89

Example : S3 spectrometer @Ganil

S3:

1 Magnetic achromatic

separator (2 dipoles)

Superconducting quadrupole triplet : Coil (NbTi), without pole

- Supra-conducting coils with multipolar corrections (hexapole+octupole)
- Quadrupoles : Raperture very large = 0.15m ;